Stock Assessment of Golden Tilefish off the Southeastern United States

Revision of the 2016 SEDAR25-Update Assessment

Southeast Fisheries Science Center
National Marine Fisheries Service

Report issued: October, 2017

Contents

1 Executive Summary 7
2 Overview 8
2.1 Data Review 8
2.2 Model Revision 8
2.3 Projection Scenarios 8
3 Model Development 9
4 Stock Assessment Results - Model 10 10
4.1 Measures of Overall Model Fit 10
4.2 Parameter Estimates 10
4.3 Stock Abundance and Recruitment 10
4.4 Total and Spawning Biomass 10
4.5 Selectivity 11
4.6 Fishing Mortality and Landings 11
4.7 Spawner-Recruitment Parameters 11
4.8 Per Recruit and Equilibrium Analyses 11
4.9 Benchmarks / Reference Points 12
4.10 Status of the Stock and Fishery 12
4.11 Comparison to Previous Assessment 12
4.12 Sensitivity Run 12
5 Projections 12
6 Discussion 13
6.1 Comments on the Assessment 13
6.2 Comments on the Projections 13
6.3 Research Recommendations 14
7 References 15
8 Tables 16
9 Figures 37
Appendices 88
A BAM Parameter Estimates 88

List of Tables

1 Models considered 16
2 Estimated total abundance at age (1000 fish) 17
2 (Continued) Estimated total abundance at age (1000 fish) 18
3 Estimated biomass at age (1000 lb) 19
3 (Continued) Estimated biomass at age (1000 lb) 20
4 Estimated time series of status indicators, fishing mortality, and biomass 21
5 Selectivity at age (terminal year) by fleet or survey 22
6 Estimated instantaneous fishing mortality rate (per yr) at age 23
6 (Continued) Estimated instantaneous fishing mortality rate (per yr) at age 24
$7 \quad$ Estimated time series of fully selected fishing mortality rates by fleet 25
8 Estimated time series of landings in gutted weight (1000 lb) 26
9 Estimated time series of landings number (1000 fish) 27
10 Estimated landings at age in gutted weight (1000 lb) 28
10 (Continued) Estimated landings at age in gutted weight (1000 lb) 29
11 Estimated total landings at age in numbers (1000 fish) 30
11 (Continued) Estimated total landings at age in numbers (1000 fish) 31
12 Estimated status indicators and benchmarks 32
13 Projection results for Scenario1: $P^{\star}=0.30$ starting in 2019, status quo 2018 ACL 33
14 Projection results for Scenario2: $P^{\star}=0.30$ starting in 2019, reduced 2018 ACL 33
15 Projection results for Scenario3: $P^{\star}=0.40$ starting in 2019, status quo 2018 ACL 34
16 Projection results for Scenario4: $P^{\star}=0.40$ starting in 2019, reduced 2018 ACL 34
17 Projection results for Scenario5: $P^{\star}=0.45$ starting in 2019, status quo 2018 ACL 35
18 Projection results for Scenario6: $P^{\star}=0.45$ starting in 2019, reduced 2018 ACL 35
19 Projection results for Scenario7: $F=0.75 F_{\text {MSY }}$ starting in 2019, status quo 2018 ACL 36
20 Projection results for Scenario8: $F=0.75 F_{\text {MSY }}$ starting in 2019, reduced 2018 ACL 36

List of Figures

1 Observed and estimated annual length and age compositions 38
2 Observed and estimated landings: Commercial handlines 43
3 Observed and estimated landings: Commercial longlines 44
4 Observed and estimated landings: Recreational 45
5 Observed and estimated index of abundance: Commercial longline 46
6 Observed and estimated index of abundance: MARMAP chevron trap 47
7 Estimated annual abundance at age 48
8 Estimated time series of recruitment 49
9 Estimated annual biomass at age 50
10 Estimated time series of total biomass and spawning stock 51
11 Selectivities of commercial fleets 52
12 Selectivities of the recreational fleet and MARMAP survey 53
13 Average selectivity across fleets 54
14 Estimated fully selected fishing mortality rate by fishery 55
15 Estimated landings in gutted weight 56
16 Estimated landings in numbers by fishery 57
17 Spawner-recruit curves 58
18 Probability densities of spawner-recruit quantities from MCB analysis 59
19 Yield per recruit and spawning potential ratio 60
20 Equilibrium landings and SSB as a function of fishing mortality rate 61
21 Equilibrium landings as a function of equilibrium biomass 62
22 Probability densities of MSY-related benchmarks from MCB analysis 63
23 Estimated time series of SSB and F relative to benchmarks 64
24 Probability densities of terminal status estimates from MCB analysis 65
25 Phase plot of terminal status estimates from MCB analysis 66
26 Comparison with previous assessment: Recruitment and abundance 67
27 Comparison with previous assessment: Average selectivity and commercial index 68
28 Comparison with previous assessment: Selectivities 69
29 Comparison with previous assessment: Relative status 70
30 Sensitivity run 71
31 Projection results for Scenario 1: $P^{\star}=0.30$, status quo 2018 ACL 72
32 Probability of being overfished under Projection Scenario 1 73
33 Projection results for Scenario 2: $P^{\star}=0.30$, reduced 2018 ACL 74
34 Probability of being overfished under Projection Scenario 2 75
35 Projection results for Scenario 3: $P^{\star}=0.40$, status quo 2018 ACL 76
36 Probability of being overfished under Projection Scenario 3 77
37 Projection results for Scenario 4: $P^{\star}=0.40$, reduced 2018 ACL 78
38 Probability of being overfished under Projection Scenario 4 79
39 Projection results for Scenario 5: $P^{\star}=0.45$, status quo 2018 ACL 80
40 Probability of being overfished under Projection Scenario 5 81
41 Projection results for Scenario 6: $P^{\star}=0.45$, reduced 2018 ACL 82
42 Probability of being overfished under Projection Scenario 6 83
43 Projection results for Scenario 7: $F=0.75 F_{\mathrm{MSY}}$, status quo 2018 ACL 84
44 Probability of being overfished under Projection Scenario 7 85
45 Projection results for Scenario 8: $F=0.75 F_{\text {MSY }}$, reduced 2018 ACL 86
46 Probability of being overfished under Projection Scenario 8 87

1 Executive Summary

This assessment provides a revision to the 2016 SEDAR25-Update assessment of golden tilefish (Lopholatilus chamaelonticeps) off the southeastern United States. The primary objectives were to replace the robust multinomial likelihood with the Dirichlet-multinomial for fitting composition data, and to conduct new stock projections, as requested by the South Atlantic Fishery Management Council. Otherwise, data and modeling methods were identical to those in the SEDAR25-Update.

The assessment period was 1962-2014. Available data on this stock include indices of abundance, landings, and samples of annual length and age compositions from fishery dependent and independent sources. Two indices of abundance were fitted by the model: one from the commercial longline fleet, and one from a fishery independent survey. Data on landings were available from commercial and recreational fleets.

Analyses were conducted using the Beaufort Assessment Model (BAM), a statistical catch-age formulation. A base run of BAM was configured to provide estimates of key management quantities, such as stock and fishery status. Uncertainty in estimates from the base run was evaluated through a mixed Monte Carlo/Bootstrap (MCB) procedure. Median values from the uncertainty analysis were also provided. Stock status was evaluated by measuring the 2014 spawning biomass against the minimum stock size threshold (MSST). The current definition of MSST is MSST $=75 \% \mathrm{SSB}_{\mathrm{MSY}}$.

Spawning stock declined in the 1980s, remained low but stable from the mid-1990s to the mid-2000s, then increased over the last decade, rising above MSST since 2009. The terminal (2014) base-run estimate of spawning stock biomass was above MSST in the base run ($\mathrm{SSB}_{2014} / \mathrm{MSST}=1.09$), but not in the median of MCBs ($\mathrm{SSB}_{2014} / \mathrm{MSST}=0.86$). In both the base run and median of MCBs, spawning stock biomass was below $\mathrm{SSB}_{\mathrm{MSY}}$ (base: $\mathrm{SSB}_{2014} / \mathrm{SSB}_{\mathrm{MSY}}=0.81$; median: $\left.\mathrm{SSB}_{2014} / \mathrm{SSB}_{\mathrm{MSY}}=0.65\right)$. About 59% of MCB runs found that the stock is overfished $\left(\mathrm{SSB}_{2014} / \mathrm{MSST}<1.0\right)$.

Estimated fishing mortality rates began increasing in the early 1980s, peaked in the early 1990s, displayed another smaller peak around 2000, then declined steadily until 2012 when rates began to increase again. The base-run estimate of fishing mortality (F), represented by the geometric mean of the last three years (2012-2014), exceeded the MFMT $\left(F_{2012-2014} / F_{\mathrm{MSY}}=1.35\right)$ as did the median of the MCB estimates $\left(F_{2012-2014} / F_{\mathrm{MSY}}=2.49\right)$. About 79% of MCB runs found that overfishing is occurring $\left(F_{2012-2014} / F_{\mathrm{MSY}}>1.0\right)$.

Thus, this assessment finds that the stock is experiencing overfishing, and may also be overfished.
The estimated trends of this assessment are similar to those from the SEDAR25-Update. However, that assessment concluded that the stock is not overfished, with 53% of MCB runs in support of that conclusion. Here, that conclusion is reversed, but with a similar level of uncertainty; the overfished status was supported by 59% of MCB runs, and not by the base run. In both assessments, the status of overfishing was more certain, supported by 66% of MCB runs in the SEDAR25-Update and 79% in this assessment.

In this assessment, the Dirichlet-multinomial likelihood was not straightforward to implement. A simple replacement of the robust multinomial likelihood resulted in a model that did not converge, and additional steps were required to obtain a working model. This may be due to small sample sizes of composition data. Whatever the reason, we urge caution before adopting results of this assessment for use in management, and recommend that more research is needed to better understand the limitations of using the Dirichlet-multinomial likelihood in stock assessments.

2 Overview

In 2016, the SEDAR25 benchmark assessment was updated (SEDAR25 2011; SEDAR25-Update 2016). The update assessment applied the Beaufort Assessment Model (BAM, Williams and Shertzer 2015), as did the benchmark assessment. Within the BAM framework, the SEDAR25-Update assessment used the robust multinomial likelihood to fit age and length composition data. In a memorandum dated June 22, 2017 from Gregg Waugh to Dr. Bonnie Ponwith, the South Atlantic Fishery Management Council requested that the SEDAR25-Update assessment be revised using the Dirichlet-multinomial likelihood instead of the robust multinomial. In addition, the memorandum requested new stock projections. This current report fulfills those requests.

2.1 Data Review

In this assessment, the BAM was fitted to the same data as in SEDAR25-Update (SEDAR25-Update 2016), without modification. The assessment period spanned 1962-2014, and data sources were the following:

- Landings: commercial handline, commercial longline, and general recreational
- Indices of abundance: commercial longline CPUE and MARMAP longline survey
- Length compositions: commercial handline landings, commercial longline landings, and general recreational landings
- Age compositions: commercial handline landings, commercial longline landings, and MARMAP longline survey.

2.2 Model Revision

The BAM configuration was identical to that described in SEDAR25-Update (2016), with the exception that the Dirichletmultinomial likelihood was used to fit composition data. The SEDAR25-Update applied a robust version of the multinomial likelihood, as recommended by Francis (2011). More recent work has questioned the use of the multinomial distribution in stock assessment models (Francis 2014), and has recommended the Dirichlet-multinomial as an alternative (Francis 2017; Thorson et al. 2017). A chief advantage of the Dirichlet-multinomial is that it is self-weighting through estimation of an additional variance inflation parameter for each composition component, making iterative re-weighting (e.g., Francis 2011) unnecessary. In addition, it can better account for intra-haul correlations (i.e., fish caught in the same set are more alike in length or age than fish caught in a different set). A possible disadvantage is that the Dirichlet-multinomial is relatively new to stock assessment, and as such, its performance is not yet well tested. The addition of a variance inflation parameter for each composition component raises potential issues about parsimony and identifiability. Nonetheless, the Dirichlet-multinomial has recently been implemented in Stock Synthesis (Methot and Wetzel 2013; Thorson et al. 2017) and in the BAM, and was used successfully in a recent assessment of South Atlantic red grouper (SEDAR53 2017).

2.3 Projection Scenarios

As requested, projections were run through the year 2024, based on P^{\star} values of $30 \%, 40 \%$, and 45%, or at $F=75 \% F_{\text {MSY }}$. These values were assumed to take effect in 2019, and because the terminal year of the assessment was 2014, this left a four-year interim period. In 2015 and 2016, $F=F_{\text {current }}$, with $F_{\text {current }}$ as estimated from the assessment. In 2017, it was assumed that an ACL of $558,036 \mathrm{lb}$ gutted weighted would be met. In 2018, the projections assumed that either the 2017 ACL would remain in place or would be reduced to $323,000 \mathrm{lb}$ gutted weight.

Thus, this report contains a total of eight projections scenarios:

- Scenario 1: $P^{\star}=0.30$ with status quo 2018 ACL
- Scenario 2: $P^{\star}=0.30$ with reduced 2018 ACL
- Scenario 3: $P^{\star}=0.40$ with status quo 2018 ACL
- Scenario 4: $P^{\star}=0.40$ with reduced 2018 ACL
- Scenario 5: $P^{\star}=0.45$ with status quo 2018 ACL
- Scenario 6: $P^{\star}=0.45$ with reduced 2018 ACL
- Scenario 7: $F=75 \% F_{\text {MSY }}$ with status quo 2018 ACL
- Scenario 8: $F=75 \% F_{\mathrm{MSY}}$ with reduced 2018 ACL

3 Model Development

Revising the assessment model required more development than simply replacing the robust multinomial with the Dirichletmultinomial (DM); we report here on ten different exploratory model configurations (Table 1). In addition to general fits to data, each of the models was evaluated based on whether it converged and whether it maintained fidelity to the primary index of abundance (commercial longline). Convergence was assessed by whether the model achieved a positive definite Hessian matrix and a maximum gradient that did not exceed the specified tolerance ($\tau=0.0001$). Index fidelity was assessed by the overall fit to the commercial longline index, as measured by mean squared error. Ideally, the fit to this index should be at least as good as in the 2016 SEDAR25-Update.

The exploratory model configurations were the following:

- Model 1: Simple replacement of robust multinomial likelihood with the DM. Weights on indices equaled 1.0.
- Model 2: Simple replacement of robust multinomial likelihood with the DM. Weights on indices set equal to those from the SEDAR25-Update (commercial longline $=3.0$ and MARMAP $=1.4$). In all subsequent models, these weights were applied, unless otherwise indicated in the model description.
- Model 3: Normal priors on the DM variance inflation parameters were put into effect. These priors had means determined by likelihood profiling and $C V=0.2$. These priors were used in all subsequent models, except Model 7 .
- Model 4: Commercial longline index weight increased twofold.
- Model 5: Commercial longline index weight increased fourfold.
- Model 6: Commercial longline index weight increased sixfold.
- Model 7: DM variance inflation parameters fixed at values to mimic the average effective sample size ($N_{\text {eff }}$) of each composition component applied in the SEDAR25-Update.
- Model 8: Composition likelihoods scaled by the SEDAR25-Update weights.
- Model 9: Composition likelihoods scaled by one tenth of the SEDAR25-Update weights.
- Model 10: Composition likelihoods all scaled by 0.01 .

For Model 7, the DM parameters (θ) were fixed using the equation for effective sample size (Thorson et al. 2017), rearranged such that $\theta=\left(N_{\text {eff }}-1\right) /\left(N-N_{\text {eff }}\right)$, where N represents the average sample size of a composition component and $N_{\text {eff }}$ equals N times the component weight from SEDAR25-Update. The intent of Model 8 was to maintain the overall scale of composition likelihoods from SEDAR25-Update, and to impose partial relative weights that matched the SEDAR25-Update weighting scheme (partial because the DM parameters were additionally estimated). Model 9 was
similar to Model 8, but with reduced scaling. The intent of Model 10 was to allow relative weights to be determined by the DM parameters alone, but with reduced overall scaling of the composition components.

For Models 1 and 2, most DM variance inflation parameters were not identifiable (flat response in the likelihood surface), which was the rationale for priors in subsequent models. Models $1-8$ did not converge properly and, with the exception of Models 5 and 6, their fits to the commercial longline index were degraded (Table 1). Problems with convergence in Models 1-8 appeared to be related primarily to component scaling issues. Thus, those models were not considered further, and the remaining focus is on Models 9 and 10. Because Model 10 relies solely on the DM likelihood, without dependence on the SEDAR25-Update iterative re-weighting of the robust multinomial, it seems more in line with the Council's request for this exercise, and thus Model 10 is used here as the base configuration. Results of Model 9 are presented as a sensitivity run.

4 Stock Assessment Results - Model 10

4.1 Measures of Overall Model Fit

In general, the Beaufort Assessment Model (BAM) fit well to the available data. Predicted length compositions from each fishery were reasonably close to observed data in most years, as were predicted age compositions (Figure 1). The model was configured to fit observed commercial and recreational landings closely (Figures 2-4). Fits to indices of abundance generally captured the observed trends but not all annual fluctuations (Figures 5-6).

4.2 Parameter Estimates

Estimates of all parameters from the BAM are shown in Appendix A. Estimates of management quantities and some key parameters, such as those of the spawner-recruit model, are reported in sections below.

4.3 Stock Abundance and Recruitment

Estimated abundance declined starting in the 1970s, exhibited a smaller peak in the 1980s, then continued the decline until the mid-1990s, with moderate increase since (Figure 7). Older ages appear to have been significantly truncated by the late 1980s (Table 2). Moderate expansion of population age structure began again in the mid-2000s; however fish ages $17+$ are still relatively rare in the population.

Annual estimated number of recruits is shown in Table 2 (age-1 column) and in Figure 8.

4.4 Total and Spawning Biomass

Estimated biomass at age followed a similar pattern as abundance at age (Figure 9; Table 3). Total biomass and spawning biomass showed similar trends-general decline until 1990, general increase since the early 2000 s, and relatively stable since about 2010 (Figure 10; Table 4).

4.5 Selectivity

Selectivity estimates of the commercial handline landings and MARMAP survey were similar, and those of the commercial longlines and recreational were somewhat similar (Figures $11-12$). Fish were estimated to be near fully selected by age 6 for the commercial handline fleet and MARMAP survey, and by age 8 for the commercial longline and recreational fleets.

Average selectivities of landings were computed from F-weighted selectivities in the most recent period (Figure 13). These average selectivities were used to compute benchmarks and central-tendency projections. All selectivities, including average selectivity, are tabulated in Table 5.

4.6 Fishing Mortality and Landings

Estimated fishing mortality rates (F) began increasing in the early 1980s, peaked in the mid-1990s, displayed another smaller peak around 2000, then declined steadily until 2012 when rates began to increase again (Figure 14, Table 6). The commercial longline fleet dominates total F (Table 7). In any given year, the maximum F at age (i.e., apical F) may be less than that year's sum of fully selected F s across fleets. This inequality is due to full selection occurring at different ages among gears in the estimated selectivities.

Table 8 shows total predicted landings in weight and Table 9 shows total predicted landings in numbers by fleet. Estimated landings at age in weight and numbers are provided in Tables 10 and 11. Harvest has increased in both commercial fleets since the SEDAR25 assessment. During the same time period, recreational harvest increased for two years and then declined. In general, the majority of estimated landings were from the commercial longline fleet (Figures 15, 16; Table 8).

4.7 Spawner-Recruitment Parameters

The estimated Beverton-Holt spawner-recruit curve is shown in Figure 17, along with the effect of density dependence on recruitment, depicted graphically by recruits per spawner as a function of spawners. Values of recruitment-related parameters were as follows: assumed steepness $h=0.84$, unfished age- 1 recruitment $\widehat{R_{0}}=355,007$, unfished spawning biomass per recruit $\phi_{0}=0.00028$, and standard deviation of recruitment residuals in log space $\sigma=0.25$ (which resulted in bias correction $\varsigma=1.03$). The empirical standard deviation of recruitment residuals in log space was $\widehat{\sigma}=0.24$. Uncertainty in these quantities was estimated through the Monte Carlo/bootstrap (MCB) analysis (Figure 18).

4.8 Per Recruit and Equilibrium Analyses

Yield per recruit and spawning potential ratio were computed as functions of F (Figure 19). As in computation of MSYrelated benchmarks, per recruit analyses applied the most recent selectivity patterns averaged across fisheries, weighted by F from the last three years (2012-2014). The F s that provide $30 \%, 40 \%$, and 50% SPR are $0.18,0.11$, and 0.07 , respectively (Table 12).

As in per recruit analyses, equilibrium landings and spawning biomass were computed as functions of F (Figures 20). By definition, the F that maximizes equilibrium landings is F_{MSY}, and the corresponding landings and spawning biomass are MSY and $\mathrm{SSB}_{\mathrm{MSY}}$. Equilibrium landings and discards could also be viewed as functions of biomass B, which itself is a function of F (Figure 21).

4.9 Benchmarks / Reference Points

Biological reference points (benchmarks) were derived analytically assuming equilibrium dynamics, corresponding to the expected spawner-recruit curve (Figure 17). Reference points estimated were $F_{\mathrm{MSY}}, \mathrm{MSY}, F / F_{\mathrm{MSY}}, B_{\mathrm{MSY}}, \mathrm{SSB}_{\mathrm{MSY}}$, and SSB/MSST. Based on F_{MSY}, three possible values of F at optimum yield (OY) were considered- $F_{\mathrm{OY}}=65 \% F_{\mathrm{MSY}}$, $F_{\mathrm{OY}}=75 \% F_{\mathrm{MSY}}$, and $F_{\mathrm{OY}}=85 \% F_{\mathrm{MSY}}$ —and for each, the corresponding yield was computed. Standard errors of benchmarks were approximated as those from Monte Carlo/bootstrap analysis.

Estimates of benchmarks are summarized in Table 12. Point estimates of MSY-related quantities were $F_{\mathrm{MSY}}=0.25 \mathrm{y}^{-1}$, $\mathrm{MSY}=537.4$ gutted $\mathrm{klb}, B_{\mathrm{MSY}}=2468.3 \mathrm{mt}, \mathrm{SSB}_{\mathrm{MSY}}=20.9 \mathrm{mt}$, and $\mathrm{SSB} / \mathrm{MSST}=1.09$. Distributions of these benchmarks are shown in Figure 22.

4.10 Status of the Stock and Fishery

Estimated time series of stock status (SSB/MSST) shows decline in the early 1980s, and then increase since the mid2000s, (Figure 23, Table 4). Base-run estimates of spawning biomass remained below MSST throughout the 1990s and most of the 2000s, then rose above MSST during 2009 to 2014. Current stock status in the base run was estimated to be $\mathrm{SSB}_{2014} / \mathrm{MSST}=1.09$ (Table 12). MCB analysis suggests that the stock status determination of being not overfished (i.e., SSB > MSST) has a high degree of uncertainty (Figures 24, 25). About 59\% of MCB runs showed SSB below MSST in the terminal year.

The estimated time series of $F / F_{\text {MSY }}$ suggests that overfishing has occurred throughout a large potion of the assessment period (Figure 23, Table 4). Spikes in the early 1980s through 2004 are due primarily to the longline fleet (Figure 14). Current fishery status in the terminal year, with current F represented by the geometric mean from 2012-2014, is estimated in the base run to be $F_{2012-2014} / F_{\text {MSY }}=1.35$ (Table 12). This estimate indicates that overfishing is occurring and appears robust across MCB trials (Figures 24, 25). In about 79% of MCB runs, F was above $F_{\text {MSY }}$.

4.11 Comparison to Previous Assessment

Results of this assessment were generally similar to those from the 2016 SEDAR25-Update assessment (Figures 2629). The estimated scales and patterns of recruitment and abundance were quite similar (Figure 26), as were the time series of relative status indicators (Figure 29). The main differences were in estimated selectivity patterns of commercial handline and recreational fleets, and of the MARMAP survey (Figure 28). However, the estimated selectivity patterns of the commercial longline fleet were similar, and because this was the dominant fleet, the average selectivities used for projections and to compute MSY-related benchmarks were also similar (Figure 27).

4.12 Sensitivity Run

In this assessment, Model 10 was used as a base run configuration (models described in §3). Model 9, an alternative configuration, provided similar results to Model 10 (Figure 30). The primary difference was in the scale and timing of strong recruitment classes. Estimates of stock status, however, were nearly identical.

5 Projections

Projection results are tabulated in Tables 13-20, and shown graphically in Figures 31-46. In all projection scenarios, the probability that spawning biomass was above MSST exceeded 0.5 by the year 2024. In general, that probability was lower for scenarios with higher fishing rates or with the status quo ACL in 2018.

6 Discussion

6.1 Comments on the Assessment

The base run of the BAM indicated that the stock is not overfished $\left(\mathrm{SSB}_{2014} / \mathrm{MSST}=1.09\right)$, but is below $\mathrm{SSB}_{\mathrm{MSY}}$, and that overfishing is occurring ($F_{2012-2014} / F_{\mathrm{MSY}}=1.35$). These results were in qualitative agreement with the SEDAR25-Update. Median values from the MCB analyses were also in qualitative agreement with the overfishing status $\left(F_{2012-2014} / F_{\mathrm{MSY}}=2.49\right)$; however, the median value of stock status suggested that the stock is overfished $\left(\mathrm{SSB}_{2014} / \mathrm{MSST}=0.86\right)$. Across all MCB runs, about 79% found that overfishing is occurring, and about 59% found the stock to be overfished.

The primary index of abundance for this assessment was from the commercial longline fleet. In general, fishery dependent indices of abundance may not track actual abundance well, because of factors such as hyperdepletion or hyperstability. This situation amplifies the importance of fishery independent sampling. Although this stock assessment did include a fishery independent index, it was not particularly informative, with CVs on the order of 100-200\%. Increased sampling in deep water would benefit the stock assessment of golden tilefish, as well as other deep-water species such as blueline tilefish and snowy grouper.

Most assessed stocks in the southeast U.S. have shown histories of heavy exploitation. High rates of fishing mortality can lead to adaptive responses in life-history characteristics, such as growth and maturity schedules. Such adaptations can affect expected yield and stock recovery, and thus resource managers might wish to consider possible evolutionary effects of fishing in their management plans (Dunlop et al. 2009; Enberg et al. 2009).

The motivation for this revised golden tilefish assessment was to examine application of the Dirichlet-multinomial (DM) likelihood for fitting composition data. Unfortunately, a simple substitution of the DM likelihood for the robust multinomial resulted in a model (Model 1) that did not converge and the DM variance inflation parameters were not identifiable. The identifiability issue suggests that the DM parameters were not well informed by the composition data. This may have been because sample sizes in composition data were small relative to the number of length bins (23) and age bins (25) used in the assessment. The average sample sizes of composition data were the following: commercial handline lengths $=4.1$, commercial longline lengths $=30.0$, recreational lengths $=6.25$, commercial handline ages $=10.2$, commercial longline ages $=34.2$, and MARMAP ages $=86.6$. Likelihood profiling of the DM parameters revealed flat responses in all cases except the MARMAP age composition data, which had a relatively well defined minimum (also the largest average sample size). Of the models examined in this assessment, only two of ten converged properly (Table 1). Problems with convergence in Models 1-8 appeared to be related primarily to component scaling issues. Whatever the reason, we urge caution before using results of this revised assessment for management.

6.2 Comments on the Projections

As usual, projections should be interpreted in light of the model assumptions and key aspects of the data. Some major considerations are the following:

- In general, projections of fish stocks are highly uncertain, particularly in the long term (e.g., beyond 5-10 years).
- Although projections included many major sources of uncertainty, they did not include structural (model) uncertainty. That is, projection results are conditional on one set of functional forms used to describe population dynamics, selectivity, recruitment, etc.
- Fisheries were assumed to continue fishing at their estimated current proportions of total effort, using the estimated current selectivity patterns. New management regulations that alter those proportions or selectivities would likely affect projection results.
- Projections apply the Baranov catch equation to relate F and landings using a one-year time step, as in the assessment. The catch equation implicitly assumes that mortality occurs throughout the year. This assumption is violated when seasonal closures are in effect, introducing additional and unquantified uncertainty into the projection results.
- The projections assumed that the estimated spawner-recruit relationship applies in the future and that past residuals represent future uncertainty in recruitment. If future recruitment is characterized by runs of large or small year classes, possibly due to environmental or ecological conditions, stock projections may be affected.

6.3 Research Recommendations

More work is needed to better understand use of the Dirichlet-multinomial distribution in stock assessment. Although several authors have recommended its use (Francis 2017; Thorson et al. 2017), the benefits and limitations under various circumstances have not been fully explored.

The fishery independent index used in this assessment was highly uncertain, with CVs exceeding 100%. A survey designed to sample deepwater fishes could improve the stock assessment of golden tilefish.

7 References

Dunlop, E. S., K. Enberg, C. Jorgensen, and M. Heino. 2009. Toward Darwinian fisheries management. Evolutionary Applications 2:245-259.

Enberg, K., C. Jorgensen, E. S. Dunlop, M. Heno, and U. Dieckmann. 2009. Implications of fisheries-induced evolution for stock rebuilding and recovery. Evolutionary Applications 2:394-414.

Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68:1124-1138.

Francis, R. 2014. Replacing the multinomial in stock assessment models: A first step. Fisheries Research 151:70-84.
Francis, R. 2017. Revisiting data weighting in fisheries stock assessment models. Fisheries Research 192:5-14.
Methot, R. D., and C. R. Wetzel. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research 142:86-99.

SEDAR25, 2011. SEDAR 25: South Atlantic Golden Tilefish. SEDAR, North Charleston, SC.
SEDAR25-Update, 2016. Stock Assessment of Golden Tilefish off the Southeastern United States. SEDAR, North Charleston, SC.

SEDAR53, 2017. SEDAR 53: South Atlantic Red Grouper. SEDAR, North Charleston, SC.
Thorson, J. T., K. F. Johnson, R. D. Methot, and I. G. Taylor. 2017. Model-based estimates of effective sample size in stock assessment models using the Dirichlet-multinomial distribution. Fisheries Research 192:84-93.

Williams, E. H., and K. W. Shertzer, 2015. Technical documentation of the Beaufort Assessment Model (BAM). NOAA Technical Memorandum-NMFS-SEFSC-671.

8 Tables

Table 1. Model variations considered. The 2016 SEDAR25-Update used the robust multinomial likelihood for composition data, and Models 1-10 used the Dirichlet-multinomial (DM) likelihood. Unless otherwise indicated, weights on the indices were equal to those in the 2016 update (commercial longline $=3.0, M A R M A P=1.4$). Models 3-10 applied normal priors on DM parameters with means determined by likelihood profiling. Convergence was assessed by whether the model achieved a positive definite Hessian matrix and a maximum gradient that did not exceed the specified tolerance $(\tau=0.0001)$. MSE represents mean squared error of the commercial longline index.

Model	Description	Converge?	MSE
0.	2016 SEDAR25-Update	Y	0.024
1.	No priors on DM parameters, CPUE weights $=1$	N	0.168
2.	No priors on DM parameters	N	0.037
3.	Priors from likelihood profiling	N	0.037
4.	Commercial index weight increased twofold	N	0.027
5.	Commercial index weight increased fourfold	N	0.020
6.	Commercial index weight increased sixfold	N	0.009
7.	DM parameters fixed to mimic $N_{\text {eff }}$ in 2016 Update	N	0.060
8.	Composition likelihoods scaled by 2016 Update weights	N	0.027
9.	Composition likelihoods scaled by one tenth of 2016 Update weights	Y	0.013
10.	Composition likelihoods all scaled by 0.01	Y	0.014

@
 N以

完

year.
~
$\stackrel{\rightharpoonup}{\sim}$

Table 3. Estimated biomass at age (1000 lb) at start of year

Year	1	2	3	4	5	6	7	8	9	10	11	12	13
1962	129.4	266.8	411.2	540.6	644.2	718.5	765.0	785.7	781.3	760.4	728.8	690.0	647.1
1963	129.4	266.8	411.2	540.6	644.2	718.5	765.0	786.8	787.5	767.9	735.9	696.7	653.2
1964	129.4	266.8	411.2	540.6	644.2	718.5	765.0	786.8	788.8	774.0	743.0	703.5	659.6
1965	129.6	267.0	411.2	540.6	644.2	718.5	765.0	787.0	789.0	775.4	749.1	710.5	
1966	129.6	267.0	411.4										
1967	129.6	267.2	411.6	540.8		718						715.8	676.6
1968	129.6	267.2	411.6	541.0	644.6	718.5	764.	786.6	788.2	774.3	748.2	715.4	${ }^{677.3}$
1969	129.6	267.4	411.8	541.2	644.9	718.9	764.8	786.8	788.4	774.3	748.9	715.2	${ }^{677.0}$
1970	129.9	267.4	411.8	541.5	645.1	719.4	765.4	786.8	788.6	774.5	749.1	715.8	677.0
1971	129.9	267.4	412.0	541.7	645.3	719.6	765.7	787.3	788.2	774.3	748.9	715.6	677.3
1972	129.9	267.6	412.0	541.9	645.5	719.6	765.9	787.3	788.2	773.4	748.2	715.0	676.6
1973	129.9	267.6	412.3	541.9	645.7	719.8	766.1	787.7	788.6	773.8	747.8	714.7	676.4
1974	129.9	267.6	412.3	542.1	645.7	720.0	766	78	78	77	746.3	712.5	674.4
1975	129.9	${ }^{267.6}$	412.5	542.1	${ }^{646.0}$	719.8	765.7	788.4	783.7	767.4	741.4	707.7	669.1
1976	112.9	267.6	412.5	542.3	646.0	719.6	765.0	784.6	778.7	759.3	731.9	698.6	660.5
1977	112.4	232.6	412.5	542.3	646.0	719.6	764.6	784.0	777.1	754.4	724.4	689.8	652.1
1978	112.2	231.9	358.3	542.3	646.2	719.6	764.3	784.2	780.2	7577	724.2	687.0	7.9
1979	111.6	231.5	357.4	471.1	645.7	716.5	760.2	779.3	774.3	754.2	721.1	681.0	8
1980	110.7	229.7	356.7	469.8	561.1	717.6	759.3	776.9	770.3		718.5	678.6	634.7
1981	109.8	228.0	354.1	468.9	559.1	619.9	754.	76		73		666.0	623.0
1982	109.8	226.4	351.4	465.4	55	60	639.8	742.3	6	66	632.7	598.6	561.7
1983	108.0	226.2	${ }^{348.8}$	461.9	549.8	589.5	603.8	576.5	500.9	431.4	403.4	380.1	356.0
1984	104.9	222.7	348.3	458.6	547.6	594.1	6003	563.9	417.8	336.2	284.4	262.6	244.9
1985	100.3	216.1	343.3	45	543.7	59	606.3	56				0.7	4.4
1986	99.9	206.8	333.1	451.3	543.4	591.1	607.6	564.2	397	272.1	4.1	3.7	119.0
1987	149.7	205.7	318.8	437.8	535.3	590.6	605.8	559.3	367.7	234.6	157.4	105.4	4
1988	184.1	308.4	317.0	419.1	521.2	593.9	623.7	606	502.4	317.2	199.1	132.1	5
1989	65.0	379.2	475.3	416.9	498.7	575.2	622.1	609.6	496.5	38	241.0	149.3	8.1
1990	85.3	134.0	584.4	${ }^{625.0}$	494.9	544.3	593.5	583.6	426.2	318.1	244.1	149.7	${ }^{91.9}$
1991	86.2	176.1	206.6	768.3	通	539.9	50.	512.	379.9	㖪	183.6	139.1	8.4
1992		177.5	271.4	271.6	912.1		555.1	502.	305.3	185.2	119.7	8.6	65.0
1993	111.1	175.5	273.6	356.7	322.3	993.2	827.8	465.2	199.7	99.4	58.9	37.5	26.9
1994	988	229.3	270.5	359.6	420.9	338.2	963.4	591.5	98.8	30.9	15.0	8.8	. 5
1995	72.5	203.5	353.2	355.6	${ }^{425.1}$	448.0	334.7	721.8	150.4	19.0	5.7	2.6	7
1996	77.2	149.5	313.5	464.3	420.6	453.9	446.0	263	232.4	38.1	4.6	1.3	. 7
1997 1998	60.4 928	159.2	230.4 2454	412	551.6	461.	468	389	${ }^{122}$	${ }_{52}^{93}$	${ }_{38.6}^{15.0}$	6.2	0.4 0.7
1999	136.2	191.4	191.8	322.5	360.2	539.5	630.7	431.9	227.5	93.0	25.1	18.1	2.9
2000	141.3	280.6	294.8	252.0	383.4	395.3	558.2	547.8	199.1	88.4	35.3	9.5	6
2001	85.	291.5	432.5	387.6	299.2	416.2	401.5	440.5	164.2	46.3	20.1	7.9	2.0
2002	80.0	177.0	449.1	568.6	460.1	326.3	427.3	342.6	193.6	60.4	16.5	7.1	2.9
2003	104.9	164.9	272.7	590.4	674.0	497.1	330.7	359.1	147.3	69.4	21.2	5.7	2.4
2004	120.6	216.5	254.2	358.5	702.6	745.4	520.3	302.5	219.1	80.5	37.3	11.2	3.1
${ }_{2005}^{2005}$	${ }_{8}^{98.3}$	${ }_{2028}^{248.7}$	${ }_{383}^{333.6}$	334.2 438.5	42	775.1 468.	77	47.	18	${ }_{120.2}^{120.2}$	43.2 67.9	1.8	6.0
2007	${ }_{99.6}$	166.2	312.4	504.0	521.8	439.4	491.2	750.2	470.9	182.1	63.7	${ }_{40.3}$	14.1
2008	99.4	205.7	256.4	410.7	599.0	573.2	457.5	475.8	608.0	360.7	136.9	47.4	29.5
2009	102.1	205.0	316.8	337.1	488.8	661.8	601.6	448.4	391.5	472.5	275.4	103.4	35.3
2010	104.1	210.3	315.9	416.5	401.0	541.2	696.7	590.4	371.0	306.4	363.5	209.4	7.8
2011	105.6	214.5	324.3	415.4	495.8	444.0	569.5	684.3	490.1	291.7	236.8	277.6	158.3
${ }_{2012}^{2012}$	106	${ }_{220.5}^{217.8}$		${ }_{434.5}^{426.4}$							${ }_{284}^{227}$		
2014	106.9	221.3	33	441.4	516.3	553.8	556.7	538.8	340.6	315.5	298.5		12.7
2015	105.8	220.2	340.8	446.2	522.1	0.1	3.6	0.1	34.3	25.1	204.8	191.4	125.0

Table 3. (Continued) Estimated biomass at age (1000 lb) at start of year

Year	14	15	16	17	18	19	20	21	22	23	24	25	Total
1962	602.1	556.7	512.1	469.1	428.6	390.2	354.5	321.4	291.2	263.2	237.9	2114.2	14410.5
1963	607.8	562.2	517.2	473.8	432.5	394.0	358.0	324.7	293.9	265.9	240.3	2134.7	14508.8
1964	613.8	567.5	522.1	478.4	437.0	397.7	361.6	327.8	296.7	268.5	242.5	2155.5	14600.8
1965	619.9	573.2	527.3	483.3	441.1	401.7	365.1	331.1	299.8	271.2	244.9	2176.8	14688.5
1966	624.8	577.6	531.5	487.0	444.7	405.0	368.0	333.6	302.0	273.2	246.9	2193.8	14746.5
1967	630.7	583.1	536.6	491.6	448.9	408.7	371.5	336.9	305.1	275.8	249.3	2215.0	14819.7
1968	635.4	588.4	541.5	496.0	453.0	412.5	374.8	340.0	307.8	278.4	251.5	2235.0	14881.2
1969	636.0	593.0	546.5	500.7	457.2	416.5	378.3	343.0	310.6	281.1	253.8	2256.0	14942.3
1970	636.0	593.7	550.7	505.5	461.6	420.4	381.8	346.3	313.7	283.7	256.2	2277.6	14999.6
1971	635.6	593.5	551.2	509.3	465.8	424.2	385.4	349.4	316.6	286.2	258.6	2298.3	15047.0
1972	635.4	592.6	550.5	509.3	468.7	427.7	388.7	352.3	319.0	288.6	260.8	2317.1	15081.6
1973	635.2	592.8	550.1	508.8	469.1	430.8	392.0	355.6	321.9	291.2	263.0	2338.0	15121.3
1974	633.4	591.1	548.7	507.1	467.6	429.9	393.7	357.8	324.1	293.0	264.8	2352.6	15127.9
1975	628.5	586.4	544.5	503.5	463.9	426.4	391.1	357.6	324.5	293.4	265.2	2356.1	15080.5
1976	619.7	578.3	537.0	496.5	457.7	420.4	385.6	353.2	322.3	292.1	263.9	2344.8	14950.6
1977	611.8	570.3	529.8	489.9	451.5	414.9	380.3	348.1	318.3	290.1	262.6	2334.3	14813.5
1978	607.8	566.6	525.6	486.1	448.0	411.8	377.7	345.5	315.7	288.4	262.6	2338.2	14729.9
1979	598.8	558.2	517.6	478.4	440.9	405.2	371.5	340.2	310.6	283.5	258.8	2321.9	14529.3
1980	591.5	550.3	510.4	471.3	434.1	399.0	366.0	334.9	306.0	279.1	254.6	2305.4	14335.8
1981	578.3	535.7	495.8	457.9	421.5	387.1	354.9	325.0	297.0	271.2	246.9	2253.3	13971.6
1982	521.4	480.8	443.1	408.5	375.9	345.2	316.4	289.5	264.6	241.6	220.2	2021.0	12782.6
1983	331.6	305.8	280.6	257.5	236.6	217.2	198.9	181.9	166.2	151.7	138.5	1277.6	9280.1
1984	227.7	210.8	193.3	176.8	161.6	148.2	135.6	124.1	113.3	103.4	94.4	875.2	7550.8
1985	161.6	149.3	137.3	125.4	114.4	104.3	95.2	87.1	79.6	72.5	66.1	617.3	6535.6
1986	108.0	99.4	91.3	83.8	76.3	69.2	63.1	57.5	52.5	47.8	43.7	408.7	5714.6
1987	66.8	60.4	55.1	50.5	46.1	41.9	37.9	34.6	31.5	28.7	26.0	245.6	5074.8
1988	67.0	54.7	49.2	44.8	40.8	37.3	33.7	30.4	27.8	25.1	22.9	216.3	5462.6
1989	64.4	49.2	39.9	35.7	32.4	29.5	26.9	24.3	21.8	19.8	18.1	170.2	5547.0
1990	60.0	39.0	29.8	24.0	21.4	19.4	17.6	15.9	14.3	13.0	11.7	111.1	5252.3
1991	51.4	33.3	21.6	16.3	13.2	11.7	10.6	9.7	8.6	7.9	7.1	66.4	4924.0
1992	39.2	23.6	15.2	9.9	7.5	6.0	5.3	4.9	4.4	4.0	3.5	32.8	4502.3
1993	20.1	11.9	7.3	4.6	3.1	2.2	1.8	1.5	1.5	1.3	1.1	10.8	4014.8
1994	4.0	2.9	1.8	1.1	0.7	0.4	0.2	0.2	0.2	0.2	0.2	1.8	3444.1
1995	1.1	0.7	0.4	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.2	3097.1
1996	0.4	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2867.5
1997	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2969.0
1998	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3038.6
1999	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3171.3
2000	1.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3193.6
2001	1.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2996.5
2002	0.7	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3112.9
2003	0.9	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3241.2
2004	1.3	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3573.2
2005	1.5	0.7	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3839.8
2006	3.3	0.9	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3990.8
2007	6.4	1.8	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4065.1
2008	10.4	4.6	1.3	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4277.2
2009	22.0	7.7	3.3	0.9	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4473.8
2010	26.5	16.3	5.7	2.4	0.7	0.2	0.0	0.0	0.0	0.0	0.0	0.0	4656.6
2011	58.4	19.6	12.1	4.2	1.8	0.4	0.2	0.0	0.0	0.0	0.0	0.0	4804.7
2012	119.9	44.1	14.8	9.0	3.1	1.3	0.4	0.0	0.0	0.0	0.0	0.0	4933.5
2013	150.1	84.4	30.9	10.4	6.2	2.2	0.9	0.2	0.0	0.0	0.0	0.0	4882.8
2014	88.8	101.6	56.9	20.7	6.8	4.2	1.3	0.7	0.2	0.0	0.0	0.0	4820.0
2015	71.0	55.6	63.3	35.3	12.8	4.2	2.6	0.9	0.4	0.2	0.0	0.0	4625.5

Table 4. Estimated time series of status indicators, fishing mortality, and biomass. Fishing mortality rate is apical F. Total biomass ($B, m t$) is at the start of the year, and spawning biomass ($S S B$, female gonad weight mt) at the end of July (time of peak spawning). The MSST is defined by $M S S T=0.75 \times S S B_{M S Y}$ with constant $M=0.1$. $S P R$ is the static spawning potential ratio.

Year	F	$F / F_{\text {MSY }}$	B	$B / B_{\text {unfished }}$	SSB	$\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}$	SSB/MSST	SPR
1962	0.00	0.00	6536	0.92	91	4.34	5.78	1.00
1963	0.00	0.00	6581	0.92	92	4.39	5.85	1.00
1964	0.00	0.00	6623	0.93	93	4.42	5.90	1.00
1965	0.00	0.01	6663	0.93	93	4.45	5.94	0.97
1966	0.00	0.00	6689	0.94	94	4.48	5.97	0.99
1967	0.00	0.00	6722	0.94	94	4.51	6.01	0.99
1968	0.00	0.00	6750	0.95	95	4.53	6.04	0.99
1969	0.00	0.00	6778	0.95	95	4.56	6.08	0.99
1970	0.00	0.00	6804	0.95	96	4.58	6.11	0.99
1971	0.00	0.01	6825	0.96	96	4.60	6.13	0.98
1972	0.00	0.00	6841	0.96	97	4.62	6.16	0.99
1973	0.00	0.02	6859	0.96	97	4.63	6.17	0.96
1974	0.01	0.03	6862	0.96	97	4.62	6.17	0.90
1975	0.01	0.06	6840	0.96	96	4.60	6.13	0.84
1976	0.01	0.06	6781	0.95	95	4.56	6.08	0.85
1977	0.01	0.03	6719	0.94	95	4.53	6.04	0.90
1978	0.02	0.07	6681	0.94	94	4.50	6.00	0.81
1979	0.02	0.07	6590	0.92	93	4.45	5.93	0.83
1980	0.03	0.13	6503	0.91	92	4.37	5.83	0.70
1981	0.12	0.47	6337	0.89	86	4.12	5.50	0.38
1982	0.47	1.90	5798	0.81	68	3.26	4.35	0.15
1983	0.38	1.57	4209	0.59	48	2.28	3.04	0.18
1984	0.35	1.45	3425	0.48	37	1.75	2.33	0.19
1985	0.42	1.70	2965	0.42	29	1.39	1.85	0.17
1986	0.51	2.10	2592	0.36	23	1.10	1.46	0.15
1987	0.13	0.54	2302	0.32	21	0.99	1.32	0.38
1988	0.24	0.99	2478	0.35	21	1.02	1.35	0.25
1989	0.43	1.76	2516	0.35	20	0.96	1.27	0.17
1990	0.52	2.11	2382	0.33	18	0.86	1.14	0.16
1991	0.71	2.88	2234	0.31	16	0.76	1.01	0.13
1992	1.12	4.55	2042	0.29	13	0.63	0.85	0.11
1993	1.86	7.61	1821	0.26	10	0.50	0.67	0.09
1994	1.65	6.73	1562	0.22	9	0.42	0.56	0.09
1995	1.37	5.57	1405	0.20	8	0.36	0.48	0.10
1996	0.90	3.68	1301	0.18	8	0.36	0.48	0.12
1997	0.85	3.47	1347	0.19	8	0.39	0.52	0.13
1998	0.71	2.91	1378	0.19	9	0.42	0.56	0.14
1999	0.94	3.82	1439	0.20	9	0.42	0.57	0.12
2000	1.45	5.93	1449	0.20	8	0.37	0.50	0.10
2001	0.99	4.04	1359	0.19	7	0.35	0.46	0.12
2002	1.02	4.14	1412	0.20	8	0.36	0.48	0.11
2003	0.59	2.42	1470	0.21	9	0.42	0.55	0.15
2004	0.59	2.40	1621	0.23	10	0.48	0.64	0.15
2005	0.54	2.20	1742	0.24	11	0.54	0.72	0.15
2006	0.48	1.95	1810	0.25	12	0.58	0.78	0.17
2007	0.25	1.03	1844	0.26	13	0.64	0.85	0.24
2008	0.24	0.97	1940	0.27	15	0.70	0.94	0.26
2009	0.23	0.94	2029	0.28	16	0.76	1.01	0.26
2010	0.23	0.92	2112	0.30	17	0.81	1.08	0.27
2011	0.21	0.88	2179	0.31	18	0.85	1.14	0.28
2012	0.28	1.15	2238	0.31	18	0.87	1.16	0.22
2013	0.32	1.32	2215	0.31	18	0.85	1.14	0.21
2014	0.40	1.63	2186	0.31	17	0.81	1.09	0.17
2015		.	2098	0.29	19	0.90	1.20	

Table 5. Selectivity at age for commercial handline (cH) landings, commercial longlines (cL) landings, recreational (rA) landings, the MARMAP longline survey (mm), and selectivity of landings averaged across fleets (L.avg). TL is total length.

Age	TL(mm)	TL(in)	cH	cL	rA	mm	L.avg
1	256.5	10.1	0.000	0.000	0.000	0.000	0.000
2	354.4	14.0	0.000	0.000	0.000	0.001	0.000
3	435.5	17.1	0.007	0.000	0.000	0.017	0.001
4	502.6	19.8	0.124	0.000	0.000	0.225	0.014
5	558.1	22.0	0.747	0.000	0.002	0.834	0.086
6	604.1	23.8	0.984	0.008	0.033	0.989	0.120
7	642.2	25.3	0.999	0.159	0.408	0.999	0.262
8	673.7	26.5	1.000	0.825	0.933	1.000	0.847
9	699.7	27.5	1.000	0.992	0.996	1.000	0.993
10	721.3	28.4	1.000	1.000	1.000	1.000	1.000
11	739.2	29.1	1.000	1.000	1.000	1.000	1.000
12	754.0	29.7	1.000	1.000	1.000	1.000	1.000
13	766.2	30.2	1.000	1.000	1.000	1.000	1.000
14	776.4	30.6	1.000	1.000	1.000	1.000	1.000
15	784.8	30.9	1.000	1.000	1.000	1.000	1.000
16	791.7	31.2	1.000	1.000	1.000	1.000	1.000
17	797.5	31.4	1.000	1.000	1.000	1.000	1.000
18	802.2	31.6	1.000	1.000	1.000	1.000	1.000
19	806.2	31.7	1.000	1.000	1.000	1.000	1.000
20	809.4	31.9	1.000	1.000	1.000	1.000	1.000
21	812.1	32.0	1.000	1.000	1.000	1.000	1.000
22	814.4	32.1	1.000	1.000	1.000	1.000	1.000
23	816.2	32.1	1.000	1.000	1.000	1.000	1.000
24	817.7	32.2	1.000	1.000	1.000	1.000	1.000
25	819.0	32.2	1.000	1.000	1.000	1.000	1.000

Table 6. Estimated instantaneous fishing mortality rate (per yr) at age

Year	1	2	3	4	5	6	7	8	9	10	11	12	13
1962	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1963	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1964	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1965	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.002	0.002	0.002	0.002	0.002
1966	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1967	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
1968	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
1969	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1970	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
1971	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.002	0.002
1972	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
1973	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.004	0.004	0.004	0.004
1974	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.007	0.008	0.009	0.009	0.009	0.009
1975	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.012	0.015	0.015	0.015	0.015	0.015
1976	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.012	0.014	0.015	0.015	0.015	0.015
1977	0.000	0.000	0.000	0.000	0.002	0.002	0.003	0.007	0.008	0.008	0.008	0.008	0.008
1978	0.000	0.000	0.000	0.001	0.006	0.008	0.009	0.015	0.017	0.017	0.017	0.017	0.017
1979	0.000	0.000	0.000	0.001	0.004	0.005	0.007	0.014	0.016	0.016	0.016	0.016	0.016
1980	0.000	0.000	0.000	0.002	0.010	0.013	0.016	0.028	0.031	0.031	0.031	0.031	0.031
1981	0.000	0.000	0.000	0.004	0.023	0.031	0.044	0.101	0.115	0.116	0.116	0.116	0.116
1982	0.000	0.000	0.000	0.009	0.052	0.072	0.133	0.396	0.462	0.465	0.465	0.465	0.465
1983	0.000	0.000	0.000	0.005	0.032	0.044	0.097	0.325	0.382	0.384	0.384	0.385	0.385
1984	0.000	0.000	0.000	0.005	0.031	0.043	0.091	0.300	0.352	0.355	0.355	0.355	0.355
1985	0.000	0.000	0.000	0.004	0.026	0.037	0.100	0.353	0.414	0.417	0.418	0.418	0.418
1986	0.000	0.000	0.000	0.004	0.026	0.038	0.111	0.430	0.510	0.514	0.514	0.514	0.514
1987	0.000	0.000	0.000	0.001	0.005	0.008	0.027	0.110	0.130	0.131	0.132	0.132	0.132
1988	0.000	0.000	0.000	0.002	0.011	0.016	0.051	0.203	0.241	0.243	0.243	0.243	0.243
1989	0.000	0.000	0.000	0.004	0.021	0.031	0.093	0.361	0.428	0.431	0.431	0.431	0.431
1990	0.000	0.000	0.000	0.004	0.022	0.033	0.107	0.432	0.513	0.517	0.518	0.518	0.518
1991	0.000	0.000	0.000	0.004	0.023	0.035	0.138	0.588	0.701	0.707	0.707	0.707	0.707
1992	0.000	0.000	0.000	0.004	0.024	0.040	0.205	0.926	1.106	1.115	1.115	1.115	1.115
1993	0.000	0.000	0.001	0.010	0.061	0.093	0.364	1.552	1.850	1.864	1.865	1.865	1.865
1994	0.000	0.000	0.000	0.008	0.047	0.073	0.317	1.372	1.635	1.648	1.649	1.649	1.649
1995	0.000	0.000	0.000	0.007	0.044	0.067	0.266	1.136	1.354	1.365	1.365	1.365	1.365
1996	0.000	0.000	0.000	0.003	0.018	0.030	0.165	0.749	0.895	0.902	0.902	0.902	0.902
1997	0.000	0.000	0.000	0.003	0.016	0.028	0.162	0.709	0.843	0.849	0.850	0.850	0.850
1998	0.000	0.000	0.000	0.002	0.012	0.021	0.128	0.592	0.708	0.714	0.714	0.714	0.714
1999	0.000	0.000	0.000	0.003	0.017	0.028	0.169	0.777	0.929	0.936	0.937	0.937	0.937
2000	0.000	0.000	0.000	0.004	0.027	0.047	0.265	1.208	1.443	1.454	1.455	1.455	1.455
2001	0.000	0.000	0.000	0.004	0.022	0.036	0.187	0.824	0.982	0.990	0.990	0.990	0.990
2002	0.000	0.000	0.000	0.005	0.032	0.050	0.202	0.847	1.007	1.015	1.015	1.015	1.015
2003	0.000	0.000	0.000	0.001	0.009	0.017	0.117	0.497	0.588	0.593	0.593	0.593	0.593
2004	0.000	0.000	0.000	0.002	0.011	0.021	0.130	0.497	0.583	0.587	0.587	0.588	0.588
2005	0.000	0.000	0.000	0.002	0.014	0.025	0.129	0.459	0.534	0.538	0.538	0.538	0.538
2006	0.000	0.000	0.000	0.001	0.009	0.016	0.099	0.403	0.475	0.479	0.479	0.479	0.479
2007	0.000	0.000	0.000	0.003	0.015	0.022	0.060	0.213	0.250	0.252	0.252	0.252	0.252
2008	0.000	0.000	0.000	0.002	0.010	0.014	0.048	0.198	0.235	0.237	0.237	0.237	0.237
2009	0.000	0.000	0.000	0.001	0.007	0.011	0.047	0.192	0.227	0.229	0.229	0.229	0.229
2010	0.000	0.000	0.000	0.001	0.008	0.012	0.046	0.189	0.224	0.225	0.226	0.226	0.226
2011	0.000	0.000	0.000	0.001	0.006	0.009	0.044	0.180	0.213	0.214	0.215	0.215	0.215
2012	0.000	0.000	0.000	0.004	0.026	0.037	0.078	0.241	0.281	0.283	0.283	0.283	0.283
2013	0.000	0.000	0.000	0.003	0.019	0.027	0.074	0.271	0.320	0.322	0.322	0.322	0.322
2014	0.000	0.000	0.000	0.008	0.046	0.063	0.116	0.341	0.397	0.400	0.400	0.400	0.400

Year	14	15	16	17	18	19	20	21	22	23	24	25
1962	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1963	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1964	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1965	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1966	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1967	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1968	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1969	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1970	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1971	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1972	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1973	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
1974	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
1975	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
1976	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
1977	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
1978	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017
1979	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
1980	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
1981	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116
1982	0.465	0.465	0.465	0.465	0.465	0.465	0.465	0.465	0.465	0.465	0.465	0.465
1983	0.385	0.385	0.385	0.385	0.385	0.385	0.385	0.385	0.385	0.385	0.385	0.385
1984	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355
1985	0.418	0.418	0.418	0.418	0.418	0.418	0.418	0.418	0.418	0.418	0.418	0.418
1986	0.514	0.514	0.514	0.514	0.514	0.514	0.514	0.514	0.514	0.514	0.514	0.514
1987	0.132	0.132	0.132	0.132	0.132	0.132	0.132	0.132	0.132	0.132	0.132	0.132
1988	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243
1989	0.431	0.431	0.431	0.431	0.431	0.431	0.431	0.431	0.431	0.431	0.431	0.431
1990	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518
1991	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707
1992	1.115	1.115	1.115	1.115	1.115	1.115	1.115	1.115	1.115	1.115	1.115	1.115
1993	1.865	1.865	1.865	1.865	1.865	1.865	1.865	1.865	1.865	1.865	1.865	1.865
1994	1.649	1.649	1.649	1.649	1.649	1.649	1.649	1.649	1.649	1.649	1.649	1.649
1995	1.365	1.365	1.365	1.365	1.365	1.365	1.365	1.365	1.365	1.365	1.365	1.365
1996	0.902	0.902	0.902	0.902	0.902	0.902	0.902	0.902	0.902	0.902	0.902	0.902
1997	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850
1998	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714
1999	0.937	0.937	0.937	0.937	0.937	0.937	0.937	0.937	0.937	0.937	0.937	0.937
2000	1.455	1.455	1.455	1.455	1.455	1.455	1.455	1.455	1.455	1.455	1.455	1.455
2001	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.990	0.990
2002	1.015	1.015	1.015	1.015	1.015	1.015	1.015	1.015	1.015	1.015	1.015	1.015
2003	0.593	0.593	0.593	0.593	0.593	0.593	0.593	0.593	0.593	0.593	0.593	0.593
2004	0.588	0.588	0.588	0.588	0.588	0.588	0.588	0.588	0.588	0.588	0.588	0.588
2005	0.538	0.538	0.538	0.538	0.538	0.538	0.538	0.538	0.538	0.538	0.538	0.538
2006	0.479	0.479	0.479	0.479	0.479	0.479	0.479	0.479	0.479	0.479	0.479	0.479
2007	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252
2008	0.237	0.237	0.237	0.237	0.237	0.237	0.237	0.237	0.237	0.237	0.237	0.237
2009	0.229	0.229	0.229	0.229	0.229	0.229	0.229	0.229	0.229	0.229	0.229	0.229
2010	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226
2011	0.215	0.215	0.215	0.215	0.215	0.215	0.215	0.215	0.215	0.215	0.215	0.215
2012	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283
2013	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322
2014	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400

Table 7. Estimated time series of fully selected fishing mortality rates for commercial handlines (F.cH), commercial longline (F.cL), and recreational (F.rA) fleets. Also shown is apical F, the maximum F at age summed across fleets.

Year	F.cH	F.cL	F.rA	Apical F
1962	0.000	0.000	0.000	0.000
1963	0.000	0.000	0.000	0.000
1964	0.000	0.000	0.000	0.000
1965	0.000	0.002	0.000	0.002
1966	0.000	0.000	0.000	0.000
1967	0.000	0.001	0.000	0.001
1968	0.000	0.001	0.000	0.001
1969	0.000	0.000	0.000	0.000
1970	0.000	0.001	0.000	0.001
1971	0.000	0.002	0.000	0.002
1972	0.000	0.001	0.000	0.001
1973	0.000	0.003	0.000	0.004
1974	0.001	0.007	0.000	0.009
1975	0.002	0.013	0.000	0.015
1976	0.002	0.013	0.000	0.015
1977	0.002	0.006	0.000	0.008
1978	0.008	0.009	0.000	0.017
1979	0.005	0.011	0.000	0.016
1980	0.013	0.018	0.000	0.031
1981	0.031	0.085	0.000	0.116
1982	0.070	0.395	0.000	0.465
1983	0.042	0.342	0.000	0.385
1984	0.041	0.313	0.001	0.355
1985	0.034	0.363	0.020	0.418
1986	0.035	0.480	0.000	0.514
1987	0.007	0.124	0.000	0.132
1988	0.015	0.227	0.001	0.243
1989	0.029	0.403	0.000	0.431
1990	0.030	0.488	0.000	0.518
1991	0.030	0.676	0.000	0.707
1992	0.032	1.078	0.005	1.115
1993	0.081	1.784	0.000	1.865
1994	0.062	1.575	0.011	1.649
1995	0.058	1.308	0.000	1.365
1996	0.024	0.872	0.007	0.902
1997	0.021	0.791	0.037	0.850
1998	0.016	0.696	0.001	0.714
1999	0.022	0.907	0.008	0.937
2000	0.036	1.403	0.016	1.455
2001	0.029	0.940	0.021	0.990
2002	0.043	0.953	0.020	1.015
2003	0.011	0.526	0.055	0.593
2004	0.014	0.476	0.097	0.588
2005	0.018	0.407	0.112	0.538
2006	0.012	0.416	0.052	0.479
2007	0.020	0.219	0.012	0.252
2008	0.013	0.224	0.000	0.237
2009	0.010	0.209	0.011	0.229
2010	0.010	0.208	0.008	0.226
2011	0.007	0.194	0.013	0.215
	0.035	0.233	0.014	0.283
	0.025	0.289	0.009	0.322
	0.061	0.335	0.004	0.400

Table 8. Estimated time series of landings in gutted weight (1000 lb) for commercial handlines (cH), commercial longlines ($c L$), and recreational ($r A$).

Year	Year	cH	cL	rA	Total
1	1962	0.47	2.93	0.00	3.40
2	1963	0.44	2.78	0.00	3.22
3	1964	0.14	0.86	0.00	1.00
4	1965	3.21	20.10	0.00	23.31
5	1966	0.60	3.77	0.00	4.37
6	1967	1.43	8.93	0.00	10.36
7	1968	0.87	5.47	0.00	6.34
8	1969	0.71	4.47	0.00	5.18
9	1970	1.41	8.85	0.00	10.26
10	1971	2.62	16.40	0.00	19.02
11	1972	1.56	9.78	0.00	11.34
12	1973	5.47	34.26	0.00	39.73
13	1974	12.43	77.85	0.00	90.28
14	1975	21.57	134.01	0.00	155.58
15	1976	21.93	129.83	0.00	151.76
16	1977	25.74	62.77	0.00	88.50
17	1978	91.58	92.16	0.00	183.74
18	1979	55.87	114.27	0.00	170.13
19	1980	148.67	177.89	0.00	326.57
20	1981	334.78	785.62	0.41	1120.81
21	1982	597.99	2800.31	0.02	3398.33
22	1983	263.52	1639.46	0.59	1903.57
23	1984	202.85	1112.58	4.45	1319.87
24	1985	142.85	989.31	58.27	1190.43
25	1986	120.61	985.10	0.17	1105.87
26	1987	23.83	233.77	0.23	257.83
27	1988	50.14	453.91	2.43	506.48
28	1989	92.62	746.84	0.01	839.48
29	1990	86.05	760.85	0.35	847.25
30	1991	82.23	824.92	0.41	907.55
31	1992	81.39	883.12	5.00	969.51
32	1993	170.57	860.31	0.02	1030.90
33	1994	105.29	685.70	7.56	798.54
34	1995	82.87	594.87	0.02	677.77
35	1996	33.80	316.67	3.21	353.68
36	1997	33.83	327.37	20.35	381.55
37	1998	28.53	336.10	0.75	365.37
38	1999	37.70	473.51	5.78	516.99
39	2000	54.11	659.95	9.79	723.85
40	2001	38.47	390.05	11.49	440.02
41	2002	57.45	369.11	10.11	436.68
42	2003	18.41	223.00	29.45	270.86
43	2004	29.04	232.79	61.95	323.78
44	2005	41.17	263.66	97.07	401.90
45	2006	26.48	375.01	58.82	460.31
46	2007	49.62	259.26	16.66	325.54
47	2008	33.86	300.35	0.02	334.23
48	2009	27.35	299.62	18.20	345.17
49	2010	30.16	332.74	13.93	376.84
50	2011	22.89	348.13	25.46	396.47
51	2012	108.36	424.81	28.38	561.55
52	2013	75.02	489.60	16.04	580.66
53	2014	175.54	521.25	7.01	703.80

Table 9. Estimated time series of landings in number (1000 fish) for commercial handlines (cH), commercial longlines ($c L$), and recreational ($r A$).

Year	Year	cH	cL	rA	Total
1	1962	0.05	0.28	0.00	0.33
2	1963	0.05	0.26	0.00	0.31
3	1964	0.02	0.08	0.00	0.10
4	1965	0.36	1.90	0.00	2.25
5	1966	0.07	0.36	0.00	0.42
6	1967	0.16	0.84	0.00	1.00
7	1968	0.10	0.52	0.00	0.61
8	1969	0.08	0.42	0.00	0.50
9	1970	0.16	0.83	0.00	0.99
10	1971	0.29	1.54	0.00	1.83
11	1972	0.17	0.92	0.00	1.09
12	1973	0.60	3.22	0.00	3.82
13	1974	1.37	7.30	0.00	8.67
14	1975	2.38	12.57	0.00	14.95
15	1976	2.42	12.18	0.00	14.60
16	1977	2.84	5.89	0.00	8.73
17	1978	10.12	8.65	0.00	18.77
18	1979	6.17	10.73	0.00	16.91
19	1980	16.36	16.72	0.00	33.08
20	1981	36.89	73.96	0.04	110.88
21	1982	67.87	264.87	0.00	332.74
22	1983	31.93	157.37	0.06	189.36
23	1984	26.21	109.62	0.45	136.29
24	1985	19.66	100.94	6.17	126.78
25	1986	17.75	104.98	0.02	122.74
26	1987	3.62	26.03	0.03	29.68
27	1988	7.60	51.56	0.29	59.45
28	1989	14.20	85.98	0.00	100.18
29	1990	13.71	89.08	0.04	102.83
30	1991	14.17	98.68	0.05	112.90
31	1992	15.01	109.60	0.65	125.26
32	1993	31.38	115.81	0.00	147.19
33	1994	19.37	98.60	1.14	119.11
34	1995	15.62	83.54	0.00	99.16
35	1996	6.49	43.59	0.46	50.54
36	1997	6.51	45.15	2.93	54.60
37	1998	5.36	46.04	0.11	51.50
38	1999	6.85	64.77	0.83	72.45
39	2000	9.88	90.88	1.41	102.17
40	2001	7.13	53.80	1.65	62.58
41	2002	11.09	50.49	1.44	63.03
42	2003	3.65	30.31	4.17	38.13
43	2004	5.60	31.39	8.80	45.79
44	2005	7.46	35.90	13.89	57.25
45	2006	4.59	50.74	8.27	63.60
46	2007	8.46	34.06	2.25	44.77
47	2008	5.69	37.79	0.00	43.48
48	2009	4.46	36.74	2.32	43.51
49	2010	4.76	40.53	1.76	47.05
50	2011	3.56	42.08	3.17	48.82
51	2012	16.78	50.38	3.46	70.63
52	2013	11.70	57.25	1.94	70.90
53	2014	27.78	61.18	0.85	89.81

Table 10. Estimated landings at age in gutted weight (1000 lb)

$=$

Table 10. (Continued) Estimated landings at age in gutted weight (1000 lb)

Year	14	15	16	17	18	19	20	21	22	23	24	25
1962	0.18	0.17	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.08	0.07	0.65
1963	0.17	0.16	0.15	0.14	0.12	0.11	0.10	0.09	0.08	0.08	0.07	0.61
1964	0.05	0.05	0.05	0.04	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.19
1965	1.26	1.17	1.08	0.99	0.90	0.82	0.75	0.68	0.61	0.55	0.50	4.45
1966	0.24	0.22	0.20	0.19	0.17	0.15	0.14	0.13	0.12	0.10	0.09	0.84
1967	0.56	0.52	0.48	0.44	0.40	0.37	0.33	0.30	0.27	0.25	${ }^{0.22}$	1.99
1968	0.35	0.32	0.30	0.27	0.25	0.23	0.20	0.19	0.17	0.15	0.14	1.22
1969	0.28	0.26	0.24	0.22	0.20	0.19	0.17	0.15	0.14	0.12	0.11	1.00
1970	0.56	0.52	0.48	0.44	0.40	0.37	0.33	0.30	0.27	0.25	0.22	2.00
1971	1.03	0.96	0.89	0.82	0.75	0.69	0.62	0.57	0.51	0.46	0.42	3.72
1972	0.61	0.57	0.53	0.49	0.45	0.41	0.37	0.34	${ }^{0.31}$	0.28	0.25	${ }^{2.23}$
1973	2.13	1.99	1.84	1.71	1.57	1.45	1.32	1.19	1.08	0.98	0.88	${ }^{7.85}$
1974	4.82	4.50	4.18	3.86	3.56	3.28	3.00	2.73	2.47	2.23	2.02	17.94
1975	8.27	7.72	7.17	${ }_{6}^{6.64}$	${ }_{5}^{6.11}$	5.62 5.45	5.16 5.00	4.72 4.58	4.28 4.18	3.87 3.79	${ }_{3.43}^{3.50}$	31.09 30.44 10
1976	${ }^{8.02}$	7.49	${ }_{6}^{6.96}$	${ }_{6}^{6.44}$	5.94	5.45	${ }_{5}^{5.00}$	${ }^{4.58}$	${ }^{4.18}$	${ }^{3.79}$	${ }^{3.43}$	30.44
1977	4.51	${ }^{4.25}$	3.95	${ }^{3.65}$	3.37	3.10	2.84	2.60	2.38	2.17	${ }^{1.96}$	17.43
1978	9.11	8.50	7.88	7.29	6.72	6.18	5.67	5.19	4.74	4.33	3.95	${ }^{35.13}$
1979	8.63	8.05	7.47	6.90	6.36	5.85	5.37	4.91	4.49	4.10	3.74	33.55
1980	16.20	15.08	13.99	12.93	11.91	10.95	10.04	9.19	8.40	7.67	6.99	63.30
1981	56.99	52.82	48.90	45.18	${ }^{41.61}$	38.22	35.06	32.09	29.33	26.78	24.40	222.61
${ }_{1982}^{1982}$	${ }^{174.82}$	${ }^{161.33}$	${ }^{148.74}$	${ }^{137.12}$	${ }^{126.26}$	${ }_{1}^{15.94}$	106.25	${ }^{97.28}$	88.91	81.16	74.02	${ }^{679.24}$
1983	95.29	87.94	80.74	74.13	68.10	62.53	57.29	52.40	47.91	43.73	39.88	368.18
1984	${ }^{61.23}$	56.69	52.05	47.59	43.54	39.89	36.55	33.42	30.52	27.87	25.41	235.88
1985	49.67	45.90	42.28	38.66	35.22	32.14	29.37	26.86	24.52	22.37	20.40	190.30
1986	39.16	36.04	33.14	30.39	27.69	25.16	22.91	20.90	19.08	17.40	15.85	148.55
1987	7.40	6.68	6.12	5.60	5.12	4.65	4.22	3.83	3.49	3.18	2.90	27.26
1988	13.02	10.63	9.54	8.70	7.94	7.24	${ }^{6.56}$	5.94	5.39	4.90	4.46	${ }^{42.06}$
1989	20.34	${ }^{15.52}$	12.61	11.27	10.24	9.32	8.47	7.67	${ }^{6.93}$	6.28	5.70	53.88
1990	21.81	14.25	10.81	75	7.79	7.06	6.41	5.82	5.26	4.74	4.29	${ }^{40.55}$
1991	23.55	15.26	9.92	7.50	6.04	5.37	4.85	4.40	3.99	3.60	3.24	30.49
1992	${ }^{23.85}$	14.43	9.31	${ }^{6.02}$	4.54	${ }^{3.75}$	${ }^{3.23}$	${ }^{2.92}$	2.64	2.39	2.15	20.09
1993	15.42	9.24	5.56	3.57	2.30	1.73	1.39	1.23	1.11	1.00	0.90	8.37
1994	2.88	2.13	1.27	0.76	0.49	0.31	0.23	0.19	0.17	0.15	0.13	1.24
1995	0.67	0.48	0.35	0.21	0.12	0.08	0.05	0.04	0.03	0.03	0.02	0.22
1996	0.20	0.13	0.09	0.07	0.04	0.02	0.01	0.01	0.01	0.01	0.00	0.05
1997	0.13	0.07	0.05	${ }^{0.03}$	0.02	0.01	0.01	${ }^{0.01}$	0.00	0.00	0.00	${ }^{0.02}$
1998	0.10	0.05	0.03	0.02	0.01	0.01	0.00	${ }^{0.00}$	0.00	0.00	0.00	0.01
1999	0.19	${ }^{0.05}$	0.03	${ }_{0}^{0.01}$	${ }_{0}^{0.01}$	0.01	${ }^{0.00}$	${ }^{0.00}$	${ }^{0.00}$	${ }_{0}^{0.00}$	${ }^{0.00}$	${ }^{0.00}$
2000	0.73	0.09	0.03	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2001	0.84	0.13	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2002	0.42	0.30	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
${ }_{2004}^{2003}$	0.38 0.51	0.10 0.20	0.07 0.05	0.01 0.04 0.0	0.00 0.01 0.01	0.00 0.00	0.00 0.00	0.00 0.00 0	0.00 0.00 0.0	0.00 0.00	0.00 0.00 0	0.00 0.00
2005	0.59	0.25	0.09	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2006	1.11	0.29	0.12	0.05	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
2007	1.27	0.38	0.10	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2008	1.97	0.88	0.26	0.07	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00
2009	4.05	1.41	0.62	0.18	0.05	0.02	0.01	0.00	0.00	0.00	0.00	0.00
2010	4.80	${ }^{2.96}$	${ }^{1.02}$	0.45	${ }_{0}^{0.13}$	${ }^{0.03}$	0.01	0.01	0.00	0.00	0.00	0.00
${ }_{2012}^{2011}$	${ }_{26.61}^{10.14}$	3.42 9.76	2.10 3.28	0.72 2.00	0.32 0.69 0					0.00 0.00 0	0.00 0.00	.00
2013	37.28	20.97	7.65	2.56	1.56	0.53	0.23	0.07	0.02	0.01	0.00	0.00
2014	26.36	30.19	16.90	6.14	2.05	1.24	0.42	0.19	0.05	0.01	0.01	0.00

 0000000000000000000 H0000000000 H00000000000000000000
 8888888888888888868888888888888888888888888888888
范

Table 12. Estimated status indicators, benchmarks, and related quantities from the base run of the Beaufort Assessment Model, conditional on estimated current selectivities averaged across fleets. Also presented are median values and measures of precision (standard errors, SE) from the Monte Carlo/Bootstrap analysis. Rate estimates (F) are in units of y^{-1}; status indicators are dimensionless; and biomass estimates are in units of metric tons or gutted pounds, as indicated. Spawning stock biomass (SSB) and minimum stock size threshold (MSST) are measured by total gonad weight of mature females. The definition of MSST is $\mathrm{MSST}=75 \% \mathrm{SSB}_{\mathrm{MSY}}$.

Quantity	Units	Estimate	Median	SE
$F_{\text {MSY }}$	y^{-1}	0.25	0.28	0.38
$85 \% F_{\text {MSY }}$	y^{-1}	0.21	0.24	0.33
$75 \% F_{\text {MSY }}$	y^{-1}	0.18	0.21	0.29
$65 \% F_{\text {MSY }}$	y^{-1}	0.16	0.18	0.25
$F_{30 \%}$	y^{-1}	0.18	0.24	0.37
$F_{40 \%}$	y^{-1}	0.11	0.14	0.12
$F_{50 \%}$	y^{-1}	0.07	0.09	0.06
$B_{\text {MSY }}$	mt	2468.3	2736.1	1170.9
SSB $_{\text {MSY }}$	mt	20.9	25.2	22.5
MSST $^{\text {MSY }}$	mt	15.7	18.9	16.9
$R_{\text {MSY }}$	1000 lb	537.4	488.9	80.0
$\mathrm{Y}^{\text {at } 85 \%} F_{\text {MSY }}$	1000 age-1 fish	355.0	333.9	271.2
$\mathrm{Y}^{\text {at } 75 \%} F_{\text {MSY }}$	1000 lb	534.8	486.9	80.5
$\mathrm{Y}_{\text {at }} 65 \% F_{\text {MSY }}$	1000 lb	529.3	482.6	81.5
$F_{2012-2014} / F_{\text {MSY }}$	-	519.1	474.9	83.2
SSB $_{2014} / \mathrm{MSST}^{2}$	-	1.35	2.49	2.04
SSB $_{2014} / \mathrm{SSB}_{\text {MSY }}$	-	1.09	0.86	1.06

Table 13. Projection results for Scenario1: fishing mortality rate fixed to achieve $P^{\star}=0.30$ starting in 2019, and with the status quo $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), F $=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	1.378	12	1838	73	558	0.374
2019	217	1247	0.148	13	1797	14	108	0.412
2020	223	1294	0.148	15	1958	19	162	0.489
2021	236	1336	0.148	16	2083	24	207	0.562
2022	248	1384	0.148	18	2187	27	239	0.621
2023	253	1419	0.148	19	2274	29	266	0.670
2024	258	1452	0.148	20	2349	31	288	0.714

Table 14. Projection results for Scenario2: fishing mortality rate fixed to achieve $P^{\star}=0.30$ starting in 2019, and with the reduced $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), F $=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	0.649	13	1838	41	323	0.404
2019	223	1286	0.148	14	1915	17	137	0.459
2020	232	1332	0.148	16	2056	22	188	0.536
2021	243	1374	0.148	17	2166	26	228	0.604
2022	253	1416	0.148	19	2258	29	258	0.657
2023	258	1448	0.148	20	2340	31	283	0.705
2024	262	1479	0.148	21	2407	33	302	0.746

Table 15. Projection results for Scenario3: fishing mortality rate fixed to achieve $P^{\star}=0.40$ starting in 2019, and with the status quo $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), F $=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	1.378	12	1838	73	558	0.374
2019	217	1247	0.215	13	1797	20	153	0.405
2020	222	1287	0.215	14	1928	26	219	0.468
2021	234	1319	0.215	16	2022	32	271	0.530
2022	245	1358	0.215	17	2097	35	305	0.581
2023	249	1384	0.215	17	2158	37	332	0.620
2024	253	1408	0.215	18	2208	39	353	0.655

Table 16. Projection results for Scenario4: fishing mortality rate fixed to achieve $P^{\star}=0.40$ starting in 2019, and with the reduced $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), F $=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	0.649	13	1838	41	323	0.404
2019	223	1286	0.215	14	1915	24	194	0.451
2020	231	1322	0.215	15	2020	30	252	0.514
2021	241	1355	0.215	16	2098	34	296	0.572
2022	250	1387	0.215	17	2160	37	328	0.615
2023	253	1410	0.215	18	2212	39	350	0.652
2024	257	1431	0.215	19	2258	40	367	0.687

Table 17. Projection results for Scenario5: fishing mortality rate fixed to achieve $P^{\star}=0.45$ starting in 2019, and with the status quo $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), F $=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	1.378	12	1838	73	558	0.374
2019	217	1247	0.257	13	1797	23	179	0.401
2020	222	1282	0.257	14	1910	30	250	0.455
2021	233	1310	0.257	15	1990	36	303	0.506
2022	243	1344	0.257	16	2049	39	337	0.551
2023	247	1364	0.257	17	2098	41	362	0.586
2024	250	1383	0.257	17	2138	43	380	0.616

Table 18. Projection results for Scenario6: fishing mortality rate fixed to achieve $P^{\star}=0.45$ starting in 2019, and with the reduced $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), F $=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	0.649	13	1838	41	323	0.404
2019	223	1286	0.257	14	1915	28	228	0.448
2020	231	1318	0.257	15	1999	34	286	0.500
2021	240	1344	0.257	16	2061	38	331	0.549
2022	248	1372	0.257	17	2107	41	360	0.587
2023	251	1390	0.257	17	2148	43	380	0.617
2024	254	1406	0.257	18	2182	44	393	0.645

Table 19. Projection results for Scenario7: fishing mortality rate $F=0.75 F_{\mathrm{MSY}}$ starting in 2019, and with the status quo ACL in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), $F=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	1.378	12	1838	73	558	0.374
2019	217	1247	0.210	13	1797	19	150	0.406
2020	223	1288	0.210	14	1931	26	215	0.469
2021	234	1320	0.210	16	2026	31	266	0.532
2022	245	1360	0.210	17	2103	34	301	0.584
2023	249	1386	0.210	18	2166	37	327	0.625
2024	254	1411	0.210	18	2217	39	349	0.660

Table 20. Projection results for Scenario8: fishing mortality rate $F=0.75 F_{\mathrm{MSY}}$ starting in 2019, and with the reduced $A C L$ in 2018. $R=$ number of age-1 recruits (1000 fish), $N=$ total stock abundance (1000 fish), $F=$ fishing mortality rate (per year), $S=$ spawning stock ($m t$), $B=$ total stock biomass ($m t$), $L=$ landings expressed in numbers (1000 fish) and gutted weight (w, in 1000 lb), and pr.msst=proportion of stochastic projection replicates with $\mathrm{SSB} \geq$ MSST using the 75% definition of MSST. All values except year and probabilities are medians from the stochastic projections.

Year	R	N	F	$\mathrm{S}(\mathrm{mt})$	$\mathrm{B}(\mathrm{mt})$	$\mathrm{L}(\mathrm{n})$	$\mathrm{L}(\mathrm{w})$	pr.msst
2015	234	1324	0.871	13	1883	62	505	0.388
2016	227	1306	0.871	13	1872	59	478	0.386
2017	228	1296	1.236	12	1876	70	558	0.379
2018	223	1272	0.649	13	1838	41	323	0.404
2019	223	1286	0.210	14	1915	23	190	0.452
2020	231	1323	0.210	15	2022	29	248	0.515
2021	241	1356	0.210	17	2102	33	292	0.575
2022	250	1389	0.210	17	2167	36	323	0.619
2023	254	1412	0.210	18	2221	38	346	0.657
2024	257	1434	0.210	19	2267	40	363	0.692

9 Figures

Figure 1. Observed (open circles) and estimated (solid line) annual length and age compositions by fleet or survey. In panels indicating the data set, lcomp refers to length compositions, acomp to age compositions, cH to commercial handlines, cL to commercial longlines, $r A$ to recreational, and $m m$ to MARMAP chevron trap. Effective N indicates the estimated effective sample size.

Figure 1. (cont.) Observed (open circles) and estimated (solid line) annual length and age compositions by fleet or survey.

Figure 1. (cont.) Observed (open circles) and estimated (solid line) annual length and age compositions by fleet or survey.

Figure 1. (cont.) Observed (open circles) and estimated (solid line) annual length and age compositions by fleet or survey.

Figure 1. (cont.) Observed (open circles) and estimated (solid line) annual length and age compositions by fleet or survey.

Figure 2. Observed (open circles) and estimated (solid line, circles) commercial handline landings (1000 lb gutted weight). Open and solid circles may be indistinguishable in years with very close fits.

Figure 3. Observed (open circles) and estimated (solid line, circles) commercial longline landings (1000 lb gutted weight). Open and solid circles may be indistinguishable in years with very close fits.

Figure 4. Observed (open circles) and estimated (solid line, circles) recreational landings (1000 lb whole weight). Open and solid circles may be indistinguishable in years with very close fits.

Figure 5. Observed (open circles) and estimated (solid line, circles) index of abundance from the commercial handline fleet.

Figure 6. Observed (open circles) and estimated (solid line, circles) index of abundance from the MARMAP chevron trap.

Figure 7. Estimated abundance at age at start of year.

Figure 8. Top panel: Estimated recruitment of age-1 fish. Horizontal dashed line indicates $R_{\text {MSy }}$. Bottom panel: log recruitment residuals. The residuals in 2008-2015 were not estimated, as recruitment in those years were uninformed by data on year-class strength. Thus, the 2008-2015 values shown in the top panel are those predicted from the spawner-recruit curve without deviation.

Figure 9. Estimated biomass at age at start of year.

Figure 10. Top panel: Estimated total biomass (metric tons) at start of year. Horizontal dashed line indicates B_{MSY}. Bottom panel: Estimated spawning stock (mt, gonad biomass of mature females) at time of peak spawning.

Figure 11. Selectivities of commercial fleets, 1962-2014. Top panel: commercial handline, Bottom panel: commercial longline.

Figure 12. Selectivities of the recreational fleet and MARMAP survey 1962-2014. Top panel: recreational, Bottom panel: MARMAP longline survey.

Figure 13. Average selectivity across fleets weighted by geometric mean Fs from the last three assessment years, and used in computation of benchmarks and central-tendency projections.

Figure 14. Estimated fully selected fishing mortality rate (per year) by fishery. cL refers to commercial longline, cH to commercial handline, and rA to recreational.

Figure 15. Estimated landings in gutted weight by fishery from the catch-age model. cL refers to commercial longline, $c H$ to commercial handline, and rA to recreational. Horizontal dashed line in the top panel corresponds to the point estimate of MSY.

Figure 16. Estimated landings in numbers by fishery from the catch-age model. cL refers to commercial longline, cH to commercial handline, and rA ro recreational.

Figure 17. Top panel: Beverton-Holt spawner-recruit curves, with and without lognormal bias correction. The expected (upper) curve was used for computing management benchmarks. Bottom panel: log of recruits (number age1 fish) per spawner (mature female gonad weight) as a function of spawners. Years overlaid within panels indicate year of recruitment generated from spawning biomass one year prior.

Figure 18. Probability densities of spawner-recruit quantities R0 (unfished recruitment of age-1 fish), steepness, unfished spawners per recruit, and standard deviation of recruitment residuals in log space. Solid vertical lines represent point estimates or values from the base run; dashed vertical lines represent medians from the MCB runs.

Figure 19. Top panel: yield per recruit. Bottom panel: spawning potential ratio (spawning biomass per recruit relative to that at the unfished level), from which the $y \%$ levels provide $F_{y \%}$. Both curves are based on average selectivity from the end of the assessment period.

Figure 20. Top panel: equilibrium landings. The peak occurs where fishing rate is $F_{\mathrm{MSY}}=0.25$ and equilibrium landings are MSY $=537.4$ (1000 lb gutted weight). Bottom panel: equilibrium spawning biomass. Both curves are based on average selectivity from the end of the assessment period.

Figure 21. Equilibrium landings as a function of equilibrium biomass, which itself is a function of fishing mortality rate. The peak occurs where equilibrium biomass is $B_{\mathrm{MSY}}=2468.3 \mathrm{mt}$ and equilibrium landings are $\mathrm{MSY}=537.4$ (1000 lb gutted weight).

Figure 22. Probability densities of MSY-related benchmarks from MCB analysis. Solid vertical lines represent point estimates or values from the base run; dashed vertical lines represent medians from the MCB runs.

Figure 23. Estimated time series of SSB and F relative to benchmarks. Solid line indicates estimates from base run; dashed lines represent median values; gray error bands indicate $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of the MCB trials. Top panel: spawning biomass relative to the minimum stock size threshold (MSST). Bottom panel: F relative to F_{MSY}.

Figure 24. Probability densities of terminal status estimates from MCB analysis. Vertical lines represent point estimates from the base run. Dashed lines represent median values.

Figure 25. Phase plot of terminal status estimates from MCB analysis. The intersection of crosshairs indicates estimates from the base run; lengths of crosshairs defined by $5^{\text {th }}$ and $95^{\text {th }}$ percentiles.

Figure 26. Comparison of results from this revised assessment (Model10) with those from the 2016 SEDAR-Update assessment (S25-Update). Top panel: recruits. Bottom panel: abundance.

Figure 27. Comparison of results from this revised assessment (Model10) with those from the 2016 SEDAR-Update assessment (S25-Update). Top panel: selectivity averaged across fleets. Bottom panel: fit to commercial longline index, with red circles representing the observed values.

Figure 28. Comparison of results from this revised assessment (Model10) with those from the 2016 SEDAR-Update assessment (S25-Update): cL indicates commercial longline, cH indicates commercial handline, mm indicates MARMAP survey, and rA indicates recreational.

Figure 29. Comparison of results from this revised assessment (Model10) with those from the 2016 SEDAR-Update assessment (S25-Update). Top panel: F relative to F_{MSY}. Bottom panel: spawning biomass relative to MSST.

Figure 30. Sensitivity run: comparison of results from Model 10 (base run of this revised assessment) with those from Model 9.

Figure 31. Projection results for Scenario 1: fishing mortality rate fixed to achieve $P^{\star}=0.30$ starting in 2019, and with the status quo ACL in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 32. Probability of being overfished under Projection Scenario 1: fishing mortality rate fixed to achieve Pstar $=0.30$ starting in 2019, and with the status quo ACL in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 33. Projection results for Scenario 2: fishing mortality rate fixed to achieve $P^{\star}=0.30$ starting in 2019, and with the reduced $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 34. Probability of being overfished under Projection Scenario 2: fishing mortality rate fixed to achieve Pstar $=0.30$ starting in 2019, and with the reduced $A C L$ in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 35. Projection results for Scenario 3: fishing mortality rate fixed to achieve $P^{\star}=0.40$ starting in 2019, and with the status quo $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 36. Probability of being overfished under Projection Scenario 3: fishing mortality rate fixed to achieve Pstar $=0.40$ starting in 2019, and with the status quo $A C L$ in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 37. Projection results for Scenario 4: fishing mortality rate fixed to achieve $P^{\star}=0.40$ starting in 2019, and with the reduced $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 38. Probability of being overfished under Projection Scenario 4: fishing mortality rate fixed to achieve Pstar $=0.40$ starting in 2019, and with the reduced $A C L$ in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 39. Projection results for Scenario 5: fishing mortality rate fixed to achieve $P^{\star}=0.45$ starting in 2019, and with the status quo $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 40. Probability of being overfished under Projection Scenario 5: fishing mortality rate fixed to achieve Pstar $=0.45$ starting in 2019, and with the status quo ACL in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 41. Projection results for Scenario 6: fishing mortality rate fixed to achieve $P^{\star}=0.45$ starting in 2019, and with the reduced $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 42. Probability of being overfished under Projection Scenario 6: fishing mortality rate fixed to achieve Pstar $=0.45$ starting in 2019, and with the reduced $A C L$ in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 43. Projection results for Scenario 7: fishing mortality rate $F=0.75 F_{\mathrm{MSY}}$ starting in 2019, and with the status quo $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 44. Probability of being overfished under Projection Scenario 7: fishing mortality rate $F=0.75 F_{\text {MSY }}$ starting in 2019, and with the status quo ACL in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Figure 45. Projection results for Scenario 8: fishing mortality rate $F=0.75 F_{\mathrm{MSY}}$ starting in 2019, and with the reduced $A C L$ in 2018. In all panels, deterministic base-run values represented by solid lines with solid circles, medians of stochastic forecasts represented by dashed lines with open circles, and uncertainty represented by thin lines corresponding to $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Solid horizontal lines mark MSY-related quantities; dashed horizontal lines represent corresponding medians. Spawning stock (SSB) is at time of peak spawning.

Figure 46. Probability of being overfished under Projection Scenario 8: fishing mortality rate $F=0.75 F_{\text {MSY }}$ starting in 2019, and with the reduced $A C L$ in 2018. Curve represents the proportion of projection replicates for which SSB has reached the replicate-specific MSST.

Appendix A Parameter estimates from the Beaufort Assessment Model

-6.26559729330
\# log_F_dev_rA:
$-3.77696731002-6.64620439588-2.77263843634-0.471350148546 \quad 2.35353189955-3.24123635133-2.85275854038$
$-0.543974505792-5.62892498104-2.24750171135-1.86953977408 \quad 0.986294255783-4.170791670901 .79972632893$
$-3.996951360321 .249219666632 .97257490471-0.4682021533401 .479143634072 .117270783762 .42416409663$
$2.356956877873 .370504336833 .933169926924 .080064082923 .301665290481 .85885108749-4.95594488260$
$\begin{array}{llllllllllllllllllllll}2.35695687787 & 3.37050433683 & 3.93316992692 & 4.08006408292 & 3.30166529048 & 1.85885108749 \\ 1.77493037084 & 1.39385466076 & 1.90757886807 & 2.01859803166 & 1.50858644608 & 0.756300671929\end{array}$
\# F_init (fixed) :
0.0100000000000

