

SA MFC Habitat Meeting 2018

Dr. Jessica Graham

SOUTHEAST AQUATIC RESOURCES PARTNERSHIP

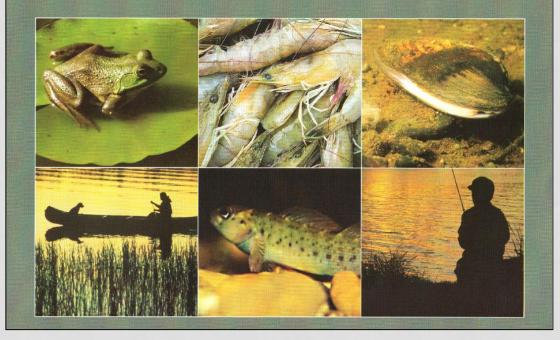
<u>**Mission**</u>: SARP will, with partners, <u>protect</u>, <u>conserve</u>, <u>and restore aquatic</u> <u>resources</u> including habitats throughout the Southeast for the continuing benefit, use and enjoyment of the American people.

Conserving our Southeastern Aquatic Habitat: THE SOUTHEAST AQUATIC HABITAT PLAN

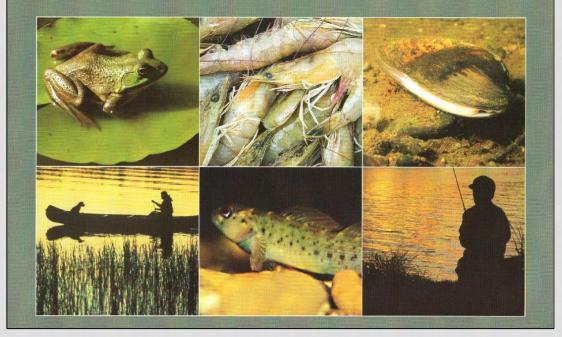
Conserving Fish Habitat From Rivers to the Sea: The Stary of the Southeast Aquate Resource Partnership

NATIONAL FISH HABITAT ACTION PLAN 2ND EDITION

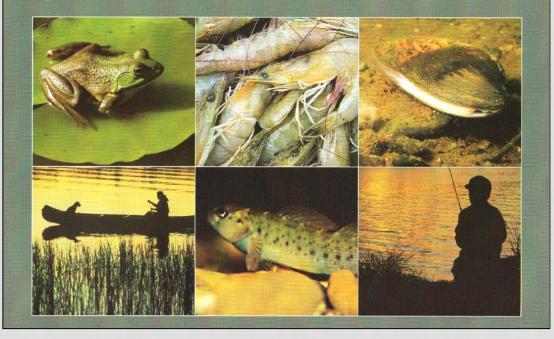
COOPERATION INVESTMENT STEWARDSHIP



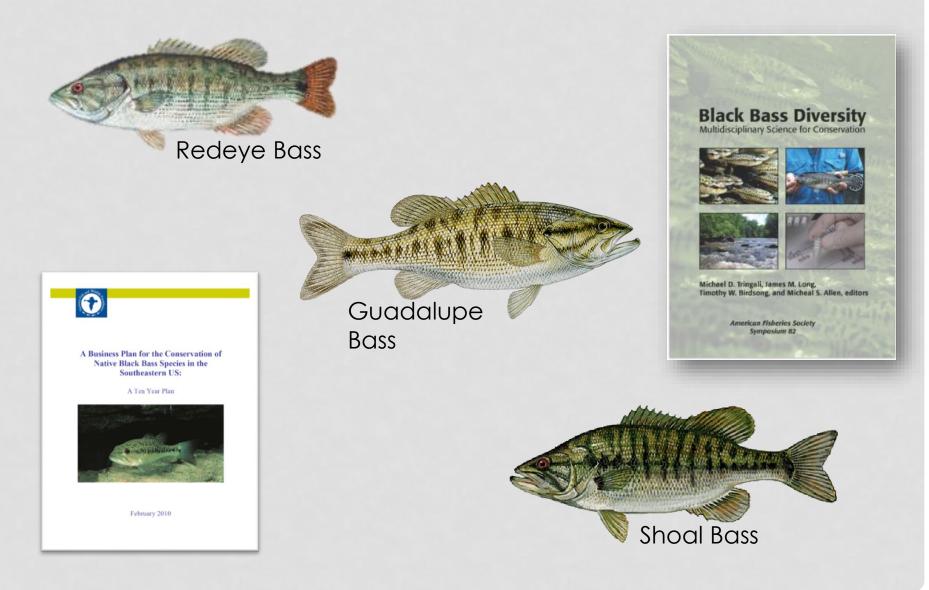
National Fish Habitat Action Plan



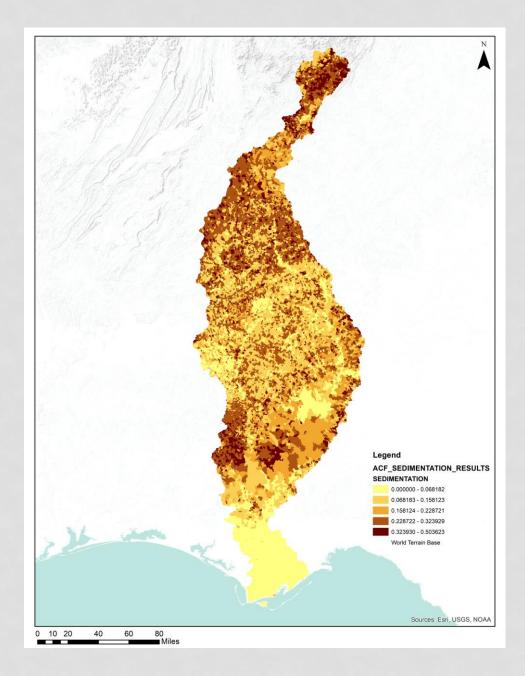
Conserving our Southeastern Aquatic Habitat: THE SOUTHEAST AQUATIC HABITAT PLAN


Native Black **Bass Initiative** Connectivity Flow Coastal Riparian **Physical Habitat** Water Quality **Invasive Species**

Conserving our Southeastern Aquatic Habitat: THE SOUTHEAST AQUATIC HABITAT PLAN


Native Black **Bass Initiative** Connectivity Flow Coastal Restoration Water Quality **Invasive Species**

Native Black Bass Initiative
Connectivity
Flow
Coastal
Restoration


NATIVE BLACK BASS INITIATIVE

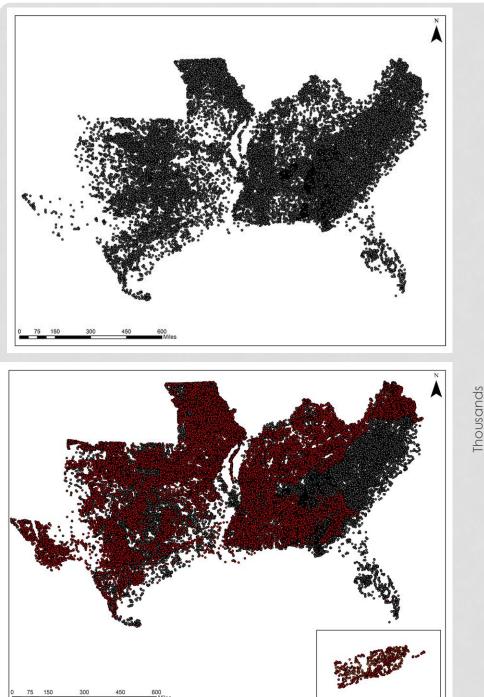
THREATS ASSESSMENT

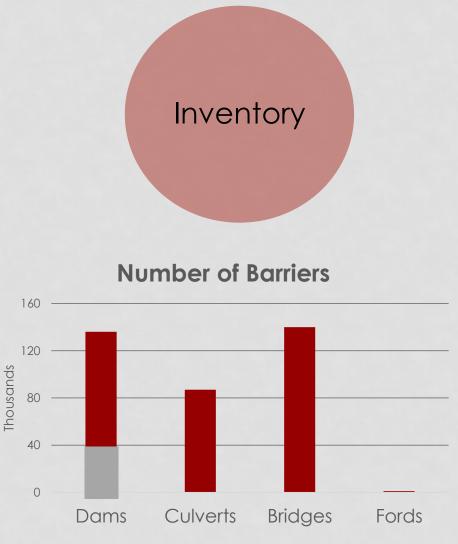
Actionable layers

- Acquisition
- Sedimentation
- Best Management Practices
- Connectivity

HABITAT RESTORATION

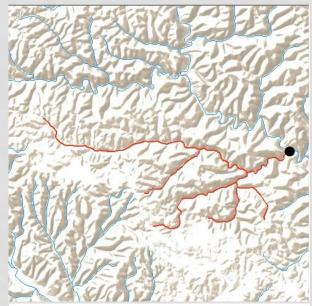
Chipola River


Pedernales River


CONNECTIVITY

Inventory

Connectivity Teams


Prioritization

Criterion	Metric
Connectivity Benefit	Miles of habitat gained by barrier removal
Watershed Condition	Percent natural land cover in floodplain of barrier's upstream functional network
Watershed Condition	Average sinuosity of barrier's upstream functional network
Watershed Condition	Number of river size classes gained by barrier's upstream functional network

Prioritization

Upstream functional river network of a dam on Ozark National Forest.

🔟 Summarize 🔍 Prioritize TEST: Heatmap

Fish and other aquatic organisms depend on high quality, connected river networks.

A legacy of human use of these networks have left them fragmented by barriers such as dams and culverts. Species are no longer able to disperse effectively through their native range, which impacts the persistence of threatened and game fish species and many other aquatic organisms. Recently improved inventories of aquatic barriers enable us to describe, understand, and prioritize them for removal, restoration, and mitigation. Through this tool and others, we intend to empower you to... This tool empowers you to explore the growing inventory of dams and road / stream crossings across the southeast U.S.

Summarize

Explore summaries of small and large aquatic barriers across the southeast. View regional summaries

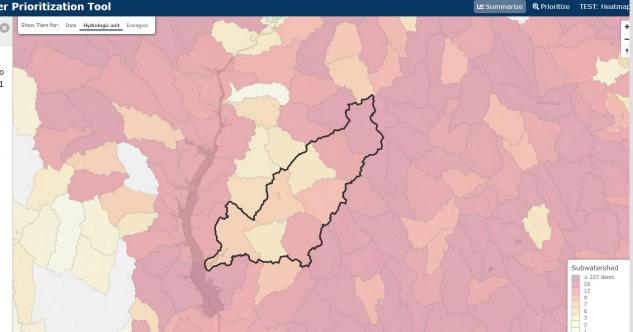
Q Prioritize

Prioritize aquatic barriers for removal in your area of interest. Start prioritizing

Learn more about aquatic barriers...

Download data | Southeast Aquatic Resources Partnership | Contact Us

Created by the Conservation Biology Institut


差 Southeast Aquatic Barrier Prioritization Tool

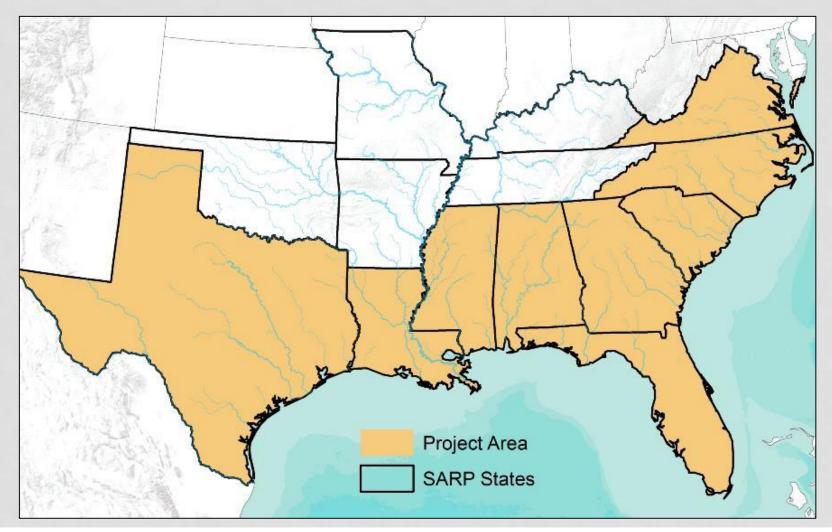
Pataula Creek Watershed

This area contains at least 103 dams that have been inventoried so far, resulting in an average of 0.961 miles of connected rivers.

This area has < 1% of the inventoried dams in the Southeast and 8.82 less miles of connected river network than the average for the region.

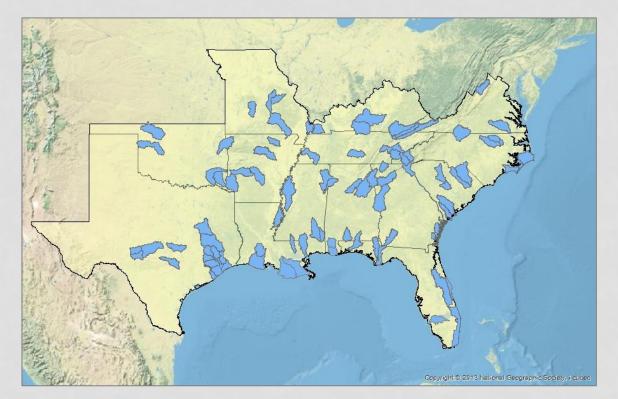
Note: These statistics are based on *inventoried* dams. Because the inventory is incomplete in many areas, areas with a high number of dams may simply represent areas that have a more complete inventory.

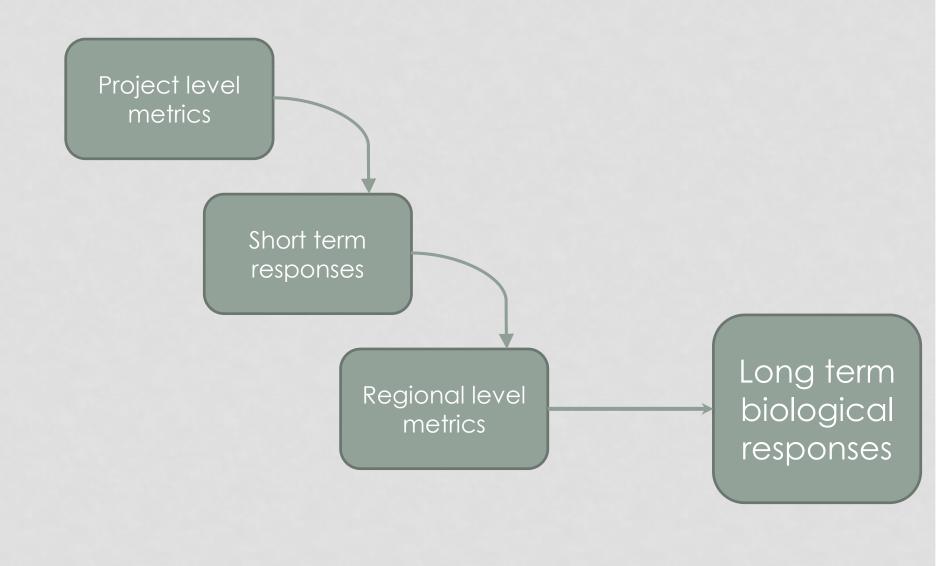
Standardized Protocol


- Passability assessments
- Risk of failure
- Stream degradation

AQUATIC CONNECTIVITY Stream Crossing Survey DATA FORM		DATABASE ENTRY BY Data entry revewed by	ENTRY DATE		
	Crossing Code	Local ID (Optional)			
	Date Observed (Databased) Lead Observer				
		Stream			
CROSSING DATA			TRAIL RAILROAD		
	GPS Coordinates (Sectoral degree)	-	W Longitude		
	Location Description				
	Crossing Type BRIDGE CULVERT MULTIPLE CULVERT FORD NO CROSS BURIED STREAM INACCESSIBLE PARTIALLY IN ACCESSIBLE NO UPSTREAM CHA		Culverts/ Bridge Cells		
	Photo IDs INLETOUTLETUPSTREAM	OOWNSTREAMOTHER			
	Flow Condition NO FLOW TYPICAL-LOW MODERATE HIGH Crossing	Condition OK POOR NEW U	NKNOWN		
	Tidal Site YES NO UNKNOWN Alignment FLOW-ALIGNED SKEWED	(-45) Road Fill Height (Top of culvart to read surfac	e; bridge = 0j		
	Bankfull Width (OptionalConfidenceHIGHLOW/ESTIMATED ConstrictionSEVEREMODERATESPANS ONLY BANKFULL/ ACTIVE CHANNEL Torthuster Group Real Lolar Group Real SPANS FULL CHANNEL & BANKS				
		g Comments			
	Riparian Vegetation Riparian Vegetation	g comments			
	Overstory Understory Ground level Overstory Understory Ground level 96 96 96 96 96 96 96 96				
	N N N O				
ST	RUCTURE 1 Structure Material METAL CONCRETE PLASTIC	WOOD ROCK/STONE FIBERGLASS	COMBINATION		
	Outlet Shape 1 2 3 4 5 6 7 FORD UNKNOWN REMOVED	Outlet Armoring NONE NOTE	XTENSIVE EXTENSIVE		
5	Outlet Grade (Pick only) AT STREAM GRADE FREE FALL CASCADE FREE FALL ONTO CASCADE CLOGGED/COLLAPSED/SUBMERGED UNKNOWN				
100	Outlet Dimensions A. Width B. Height C. Substrate/Water Width D. Water Depth				
Ť	Outlet Drop to Water Surface Outlet Drop to Stream Bottom E. Abutment Height (1ype 7 bridges only				
	L. Structure Length (Owerall length from inlet to outling Evidence of undermining 📃 Y 📃 N				
	Inlet Shape 1 2 3 4 5 6 7 FORD UNKNOWN REMOVED Inlet Armoring NONE NOT EXTENSIVE EXTENSIVE				
2	Inlet Type PROJECTING HEADWALL WINGWALLS HEADWALL & WINGWALLS MITERED TO SLOPE OTHER NONE				
=	Inlet Grade (Pick one) AT STREAM GRADE INLET DROP PERCHED CLOGGED/COLLAPSED/SUBMERGED UNKNOWN Undermining Y N				
	Inlet Dimensions A.Width B. Height C. Substrate/Wate	rWidth D. Water Depth			
	Slope 96 (Optional) Slope Confidence HIGH LOW Internal Structure	IS NONE BAFFLES/WEIRS SUPPOR	TS OTHER		
N2	Structure Substrate Matches Stream NONE COMPARABLE CONTRASTING NOT APPROPRIATE UNKNOWN				
10	Structure Substrate Type (Pick one) NONE SILT SAND GRAVEL COBBLE BOULDER BEDROCK ORGANIC MTRL UNKNOWN				
ğ	Structure Substrate Coverage 📉 NONE 📃 25% 📕 50% 📕 75% 📕 100% 💭 UNKNOWN				
0	Physical Barriers (Rick all that apply) NONE DEBRIS/SEDIMENT/ROCK DEFORMATION FREE FALL FENCING DRY OTHER				
AL	Severity (Choose carefully based on barrier type(t) above) NOR MINOR MODERATE SEVERE				
0	Water Depth Matches Stream YES NO-SHALLOWER NO-DEEPER UNKNOWN	DRY			
D	Water Velocity Matches Stream YES NO-FASTER NO-SLOWER UNKNOWN DRY				
AC	Dry Passage through Structure? YES NO UNKNOWN Height above	Dry Passage			
	Comments				
		AQUATIC CONNECTIVITY STREAM OF	OSSING SURVEY DATA FORM		


COASTAL


"Sustainable coastal habitats and associated fisheries to increase coastal resiliency and economies across the Gulf of Mexico and South Atlantic Regions"


COASTAL

- SARP aims to be value added
 - Connect Gulf and South Atlantic regions
 - Coordination and Science support
 - Topical Workshops
 - Coastal Hydrological Impairments
 - Derelict Crab Trap removals and recycling
 - Freshwater Inflows/Upstream Connectivity

EFFECTIVENESS METRICS



A CROSS-SCALE APPROACH TO MODELING COASTAL HABITAT & BIOTA

Hierarchical Bayesian & structural equation modeling

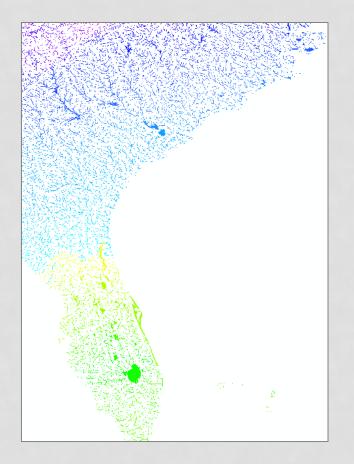
Watershed-scale variables

WATERSHED-LEVEL FACTORS & DATASETS

Anthropogenic land use:

National Land Cover Database

Human population size:


• US Census

• Water quality etc:

• US EPA StreamCat dataset

Natural attributes

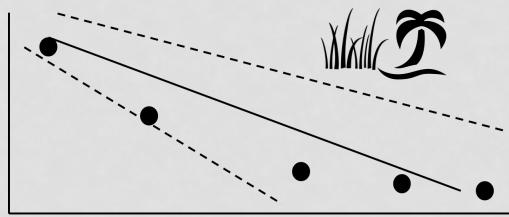
 (precip, streamflow, etc): Earth-Env dataset

COASTAL HABITAT VARIABLES: LEVERAGING EXISTING SARP WORK

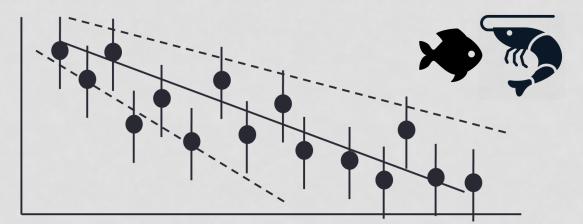
- Seagrass & oyster reef habitat:
 - TNC South Atlantic Bight Marine Assessment

Wetland habitat coverage:

- National Wetlands Inventory
- Habitat areas of particular concern:
 - NOAA

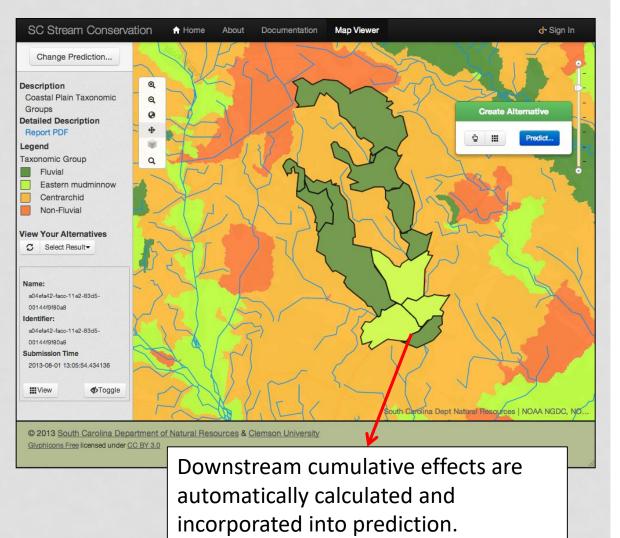

COASTAL BIOTIC DATA

- Southeast Area Monitoring and Assessment Program— South Atlantic (SEAMAP-SA)
 - Abundance, biomass & size structure of key species
 - Trawl & longline surveys

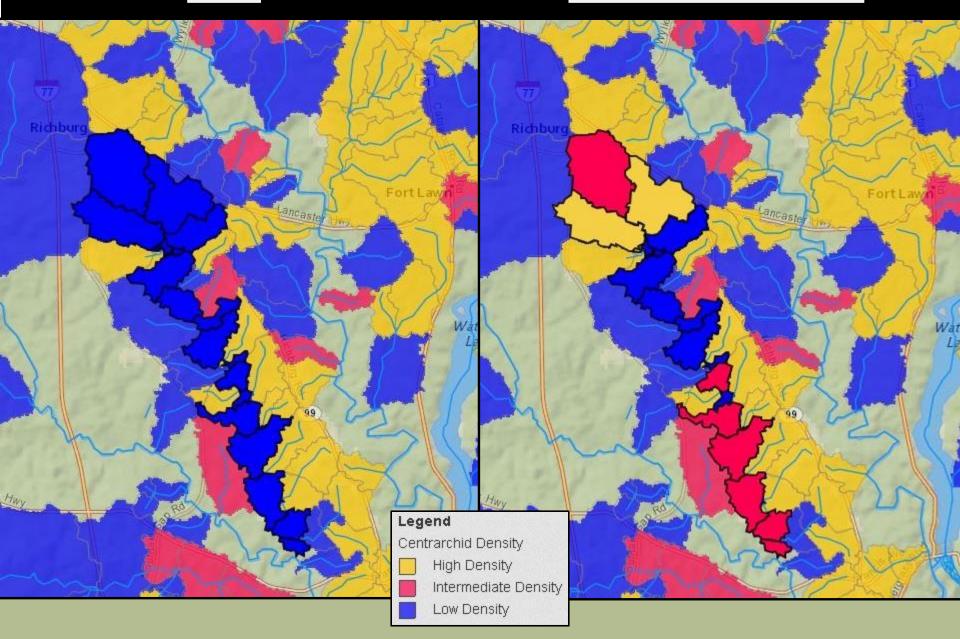

Level 1: estimate effects of watershed attributes on coastal habitat

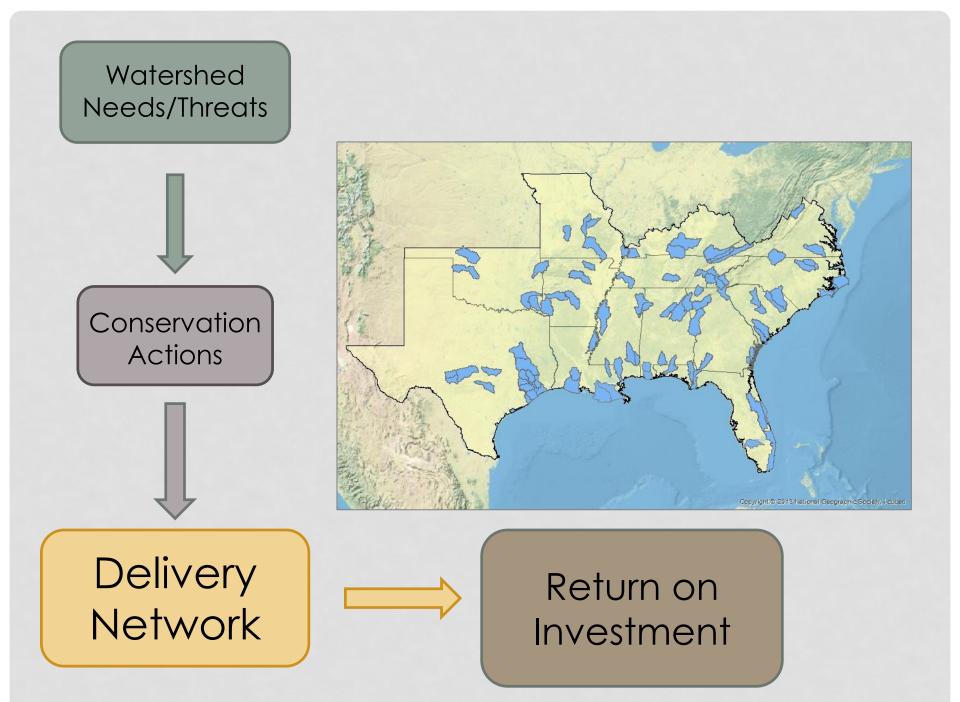
Coastal habitat variable y_i

Watershed variable x_i


Biotic variable y_i

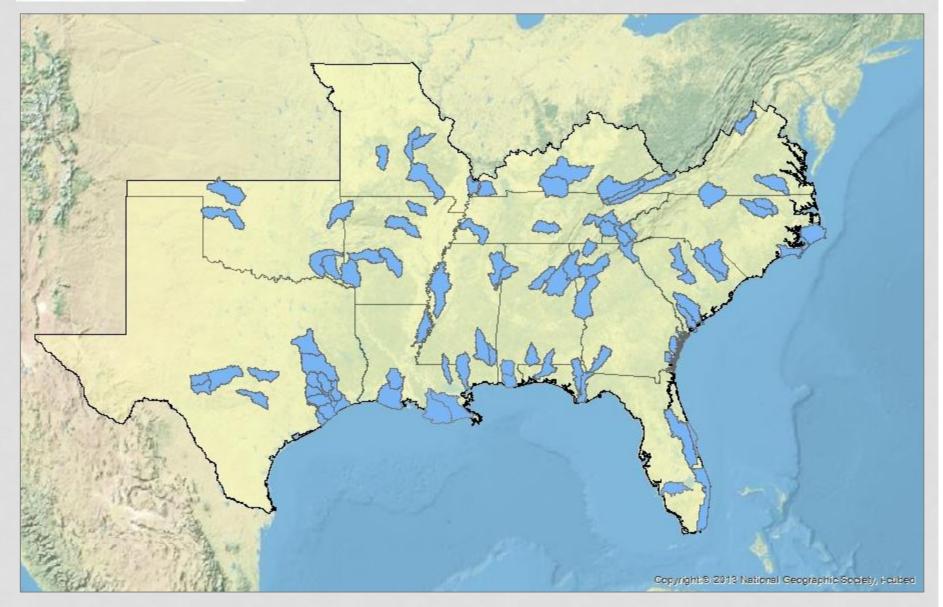
Coastal habitat variable x_i


INTERACTIVE CONSERVATION PLANNING


- Server process
 <u>dynamically executes</u>
 <u>a random forest</u>
 <u>prediction</u> inside an R
 statistical computing
 environment
- Results are returned and displayed in the map viewer.

Initial

\downarrow Forest 30% \uparrow Urban 30%



QUESTIONS?

SOUTHEAST AQUATIC RESOURCES PARTNERSHIP

INSTREAM FLOW

Research Agenda

- Long term goals
 - Promote Instream Flow • Research
 - **Disseminate Information**
 - Facilitate • Communication
 - Promote Instream Flow • **Regime Standards**

Protecting Stream Flows for Life in Alabama

Clean, flowing water in our rivers and streams, provides irreplaceable, lifesustaining services. People, wildlife

and plants depend on fresh, abundant water from healthy rivers to in rivers flows meet critical needs downstream every day. Ensuring flows are natural during different and variable — that they are constantly changing during different seasons and years — is essential for healthy rivers. health. Natural instream flows

maintain good habitat and allow

fish and other aquatic life to feed,

grow, and reproduce. High flows, for

example, cue migration and allow fish to feed in floodplains before spawning. Even natural periods of low flow are important

The way that water in controlling fish populations and maintaining the rich diversity of constantly changing aquatic life in our rivers. People also seasons and years — is depend on rivers and all part of its natural streams for drinking instream flow, one of water, wastewater the most significant treatment, and aspects of a river's irrigating our crops and lawns - among many other critical

uses. Excessive use of water, however,

diminishes natural flows. River life can be harmed - but so can the value of the multitude of commercial and recreational opportunities, such as fishing and boating we enjoy on healthy rivers. Our challenge is to manage our rivers to meet all of these needs.

Going With The Natural Flow

Water managers around the country are working every day to meet the challenge of sharing our limited water resources between human uses and the environment. It is not an easy job, but scientific information helps us understand and justify the importance of maintaining natural flows and including them in water management policies and practices. With better understanding of the value of river water flowing at different levels throughout the year, we can withdraw, store, and release water in ways that are socially and economically beneficial and make good decisions about sharing this precious resource with fish and other river life whose life cycles depend on the natural cycles of our streams.

While rivers, streams and other water bodies are plentiful across the southern landscape, fresh water is a finite resource. A river's natural instream flow maintains many valuable services, supporting the quality of life we ALL enjoy. By working together to maintain variable flow, we can share water, ensuring that enough of this precious resource is available to support these services today and sustain them for future generations.

