

NOAA FISHERIES

Artificial Intelligence / Machine Learning for Big Data Analytics

Drive space required (TB)

Collecting an additional ~60 TB annually Commonalities with manual post-processing bottlenecks Automated post-processing is a necessity

Menhaden scale aging

Dataset

- 4199 entries
- 5 classes

Input

- Image
- Metadata: weight, length, month

Overall accuracy is **87.3%**, comparable to the ~**89%** agreement of human readers

Scale class distribution

■ training ■ validation ■ testing Classification accuracy by class

3

Automation can make expedited release of halibut easier and more practical

Disposition (Stereo IMS)

Longline Vessels Rail

Gulf of Mexico SEAMAP Survey

Performance on Videos of Varying Difficulty

VIAME Models in

VIAME Models in Action

Proof of Concept Facial Recognition - Chute IMS

• Goal: identify whether two input images are the same fish.

Generate Multiple Fish

- Generate 100 images for each fish.
 - Add random color (HSV color space).
 - Add random rotation (+/- 5^{o}).
 - Add random distortion (barrel distortion).

Proof of Concept

- Set an optimal threshold for the distance matrix *D*.
 - $\begin{cases} L_{i,j} = 1 \text{ (white), } D_{i,j} < thresh \\ L_{i,j} = 0 \text{ (black), } D_{i,j} \ge thresh \end{cases}$
- Accuracy = 99.97 for all combinations (*i*, *j*) in the testing set.
- Next Steps?

