Fisheries Science with a SMILE Size Matters: Innovative Length Estimates

Overview

Discussion

Reef Environmental Education Foundation

- International conservation organization that organizes and manages the largest marine life sightings database
- Recreational divers underutilized source of data collection
 - Valuable to fill data gaps in fisheries

REEF Volunteer Fish Survey Project

- Roving diver surveys assess relative abundance and diversity
- Divers trained in fish ID record all fish through the duration of their dive
- Database reports novice and expert surveys

REEF Data

- Relative abundance and diversity of all fishes reported
- Density measure of how many individuals reported on a scale of 1-4 (single -> abundant)
- = (nS*1)+(NF*2)+(nM*3)+(nA*4)

Total # of Surveys_{species}

- Sighting Frequency measure of how often species is observed
- = # surveys report _{species}

Total # of Surveys

- Abundance score metric of sighting frequency and density
- Reports identify novice through expert surveyors; dive metadata

REEF Data

- Tracks reef fish populations similar to NOAA
 - Variation among taxonomic groups (e.g. cryptic spp.)
 - Highest agreement with large-bodied, solitary spp

FIGURE 2 Examples of species' relative abundance time-series estimated from structured RVC surveys (in blue) and opportunistic REEF citizen scientist surveys (in red). Solid lines and points represent median estimates of the annual expected abundance (α_t) with both process and measurement deviance, while dashed lines indicate the model-estimated estimated population state (x_t) with only process deviance. Shaded areas represent 90% Bayesian credible intervals for the latent population states. Time-series plots for all species comparisons are available in the Appendix.

Greenberg et al. 2024, Cons. Lett.

SAFMC Citizen Science Research Priorities & Project Selection Data Needed Poter

Meets a CitSci research priority

Helps address a data gap or deficiency

Works well with a citizen science approach

Resources available to support

Formation of diverse design team

Clearly identifies how data could be used for assessment or management

Торіс	Data Needed	Potential Outcome	
Age Sampling	Otolith & fin clip (future) collection	Characterize the age of catches	
Discard Information	Length, depth, quantity, discard reason, devices used, terminal gear, disposition	Characterize the size of discards, Improved discard removal estimates	
Genetic Sampling	ing Fin clips Stock identification, Species ID, Ageing (still developing)		
Infrastructure related infrastructure infrastructure, help be		Baseline for fishing-related infrastructure, help better define communities for social analysis	
Historical Fishing Photos	Digitized images	Species and length compositions, improved historical information	
Fishery Oral Histories & Historic Logbooks	Fishermen interviews, digitized logbooks	Improved understanding of changes in fishery over time	
Oceanographic & Environmental Conditions	Various environmental data including bottom temperature and weather	Database of climate and changing conditions, fishery patterns	
Shifting, Rare or Data Limited Species Observations	Point observations of data limited or rarely encountered species; length info for data limited species	Baseline for species shift, increased information for data limited species	
Observations in Managed Areas	Species, length, depth, videos, photos, effort, edge effects	Species composition, occurrence of spawning, info on compliance	
Movement & Migration	Species, location, length, tag details, supporting existing tagging programs	Movement and migratory patterns	
Shark & Mammal Depredation	Observations of depredation, location, species, photo, DNA swab	Document depredation observations	
Habitat Characterization	Photos, videos - focused on EFH	Ground truth bathymetry data	

SMILE – Size Matters: Innovative Length Estimates

- Professional length estimation methods can be size and species restricted; resource limited
- <u>SMILE</u> collects fish length measurements with an *in-situ* tool used by citizen scientists

• Goal:

- Complement existing REEF fish surveys
- Improve future stock assessments for datalimited species, and inform management & conservation efforts

"Fish Sense Lite" (FSL) Camera

Laser-Mounted Olympus TG6 Cameras

BACKSCATTER UNDERWATER VIDEO & PHOTO 9

Methods – Data Collection

- Location: Florida Keys
- FSL camera used by citizen scientist divers to collect images with laser on lateral side of 11 target spp.
- Stereovideo camera used by staff to compare with FSL cameras
 - Paired Dives (i.e. same fish, both systems)
 - Roving
 - 30m Belt Transects

Collaboration

Stakeholder panel advises on methods (e.g., site, species selections) and end data usage

Alligator Reef

Proposed expansion of an existing zone from 0.32 square miles to 0.52 square miles to include deep reef habitat at the 90-foot depth contour. Additionally, in order to provide consistency of regulations and promote compliance, the exception for catch and release fishing would be eliminated here, as well as at Conch Reef, Sombrero Key and Sand Key.

Methods – Target Species

Methods – FSL Data Processing

Single-laser method relies on depth-of-field, AI workflow to I.D. head/tail, and raw image file to compute fish length

13

Methods – FSL Data Processing

Single-laser method relies on depth-of-field, AI workflow to I.D. head/tail, and raw image file to compute fish length

Methods – Stereovideo Data Processing

SeaGIS Event Measure Software

Metadata Availability

- Length (mm, FL)
- Date/Time
- Location (Site Name; Lat/Long)
- GPS tracks
- Bottom Time
- Camera number
- Dive Conditions (temperature, depth, visibility, diver name)

Preliminary Results – Paired Tests (Individual fish)

(N=66) Kruskal-Wallis chi-squared = 94, df = 94, p-value = 0.481

Preliminary Results - Length Distribution x Species

Preliminary Results – Length Regression x Camera System

Preliminary Results – Known Objects

Kruskal-Wallis chi-squared = 4.4351, df = 3, p-value = 0.2181

Laser Development

• Dual (parallel) or single encased laser

- Rechargeable battery
- More robust mount, eventually adaptable to other camera models

BACKSCATTER UNDERWATER VIDEO & PHOTO

22

Citizen Science Participation

- 46 different volunteers; 295 total dives in Keys; 7 REEF Survey Trips
- Local dive operators partnership
- <u>Formal survey</u> to examine motivators & barriers to participation; camera performance & use
 - Assess demographics for target audience

What would be your level of interest in using the camera as part of this project?

If you participate in marine species monitoring, how much of an impact do you believe your contribution would have on fisheries management?

What type of training would you prefer to learn the skills to participate in the project?

How easy was it to perform both a REEF survey and use the camera for the SMILE project at the same time?

What would most motivate you to participate in the project?

Citizen Scientist Participation

- Volunteers perform AI training tasks through label studio
 - Identify laser location and fish species

Collaboration

- Data application and management platform
- Data visualization

Summary

- Camera systems are comparable to each other to generate lengths
 - Stereovideo tends to measure larger than Fish Sense Lite
- Troubleshooting hardware/software challenges
- Positive citizen scientist response
- Publicly available data, akin to REEF's VFSP

THANK YOU!

The SMILE Project: Size Matters, Innovative Length Estimates

SCAN TO

Questions for me?

80%

We are data limited for 80% of fish stocks in South Atlantic and Gulf of Mexico federal waters *

Length data provide key insight into the status of fish populations

Older, bigger fish are often more reproductively active and produce more eggs than younger, smaller fish

* Williams, E. (2017, May). SEDAR Stock Assessments: Transitioning from Benchmarks/Updates to Research/Operational. NOAA Fisheries.

Email smile@REEF.org for more information and to volunteer!

Length data are often

limited on ecologically

important fish such as

parrotfish and grouper

Measuring fish often

requires handling or harvesting, which can be stressful to the fish

Photos are analyzed to generate a length estimate without handling fish

Photos a analyzed generate a le

With the SMILE project, citizen science divers photograph key species like Black Grouper with laser mounted cameras

Questions

- Methodology:
 - Informative for size data needed for stock assessments and/or management?
 - Suggestions/concerns, to boost confidence in this data source
 - Repeat sightings of fish?
- Data suggestions:
 - Species selection?
 - What data sources are most useful for assessors and managers?
- Data provision:
 - Data accessibility preferences?

EXTRA SLIDES

Slides as needed for any additional reference/questions

REEF Volunteer Fish Survey Project

Example of Data Interpretation

Caribbean Example

Den	%SF	Explanation	
HIGH Den >3.0	HIGH %SF >50	Species is often observed and observed at high densities. Species is seen > 50% of the time and when it is seen the abundance category most often recorded is M of A.	
		Species examples: bicolor damselfish, blue chromis, brown chromis	
HIGH Den >3.0	LOW %SF <50	Species is not often seen, but when it is seen, it is observed at high densities. Species is seen < 50% of the time and when it is seen the abundance category most often recorded is M or A.	
		Species examples: silversides/herrings, garden eel	
LOW Den		Species is often observed, but always at low densities. Species is seen > 50% of the time and when it is seen the abundance category most often recorded is F or S.	
<3.0 >50	Species examples: trumpetfish, rock beauty, foureye butterflyfish		
LOW Den <3.0			
		Species examples: green moray, saucereye porgy, spotted scorpionfish	

REEF Database Citation

Please cite REEF's Database as: REEF. year. Reef Environmental Education Foundation Volunteer Fish Survey Project Database. World Wide Web electronic publication. <u>www.REEF.org</u>, date of download (day month year).

Abundance Codes: S-Single; F-Few 2-10; M-Many 11-100; A-Abundant >100

Diver Name:		Date: Time Star		rt: Bottom Time:	
Dive Site Name a	nd REEF Zone Code: _				
Water Temp:	Visibility:	Max Depth:	Avg Depth:	Current:	Habitat:

0119	Black Hamlet (Hypoplectrus nigricans)	None v
0121 Family	Butter Hamlet (Hypoplectrus unicolor)	None ~
0130	Hogfish (Labridae) Hogfish (Lachnolaimus maximus)	None ~
0131		None
Family	Spanish Hogfish (Bodianus rufus) Jack (Carangidae)	Number seen
0133	Bar Jack (Carany ruber)	None v
0137	Horse-eye Jack (Caranx latus)	None ~
Family		Number seen
0144	Blue Parrotfish (Scarus coeruleus)	None ~
0147	Greenblotch Parrotfish (Sparisoma atomarium)	None ~
0148	Midnight Parrotfish (Scarus coelestinus)	None ~
0149	Princess Parrotfish (Scarus taeniopterus)	None ~
0150	Queen Parrotfish (Scarus vetula)	None v
0151	Rainbow Parrotfish (Scarus guacamaia)	None ~
0152	Redband Parrotfish (Sparisoma aurofrenatum)	None ~
0152	Redtail Parrotfish (Sparisoma chrysopterum)	None v
		Tione .
0155	Stoplight Parrotfish (Sparisoma viride)	None ~
0156	Striped Parrotfish (Scarus iseri)	None ~
0153	Yellowtail (Redfin) Parrotfish (Sparisoma rubripinne)	None ~
Family		Number seen
0163	Balloonfish (Diodon holocanthus)	None ~
0166	Porcupinefish (Diodon hystrix)	None ~
0167	Sharpnose Puffer (Canthigaster rostrata)	None ~
Family 0173		Number seen
	Green Razorfish (Xyrichtys splendens)	None ~
0175 Family	Rosy Razorfish (Xyrichtys martinicensis)	None ~ Number seen
0180	Seabass (Serranidae) Creolefish (Atlantic) (Paranthias furcifer)	None ~
0234		None V
	Greater Soapfish (Rypticus saponaceus)	
0181	Harlequin Bass (Serranus tigrinus)	None ~
0182	Lantern Bass (Serranus baldwini)	None ~
0185	Tobaccofish (Serranus tabacarius)	None ~
Family		Number seen
0192	Gray Snapper (Lutjanus griseus)	None ~
0193	Lane Snapper (Lutjanus synagris)	None ~
0194	Mahogany Snapper (Lutjanus mahogoni)	None ~
0195	Mutton Snapper (Lutjanus analis)	None ~
0196	Schoolmaster (Lutjanus apodus)	None v
0197	Yellowtail Snapper (Ocyurus chrysurus)	None ~
Family	/ Squirrelfish (Holocentridae)	Number seen
0198	Blackbar Soldierfish (Myripristis jacobus)	None ~
0200	Longjaw Squirrelfish (Neoniphon marianus)	None ~
0201	Longspine Squirrelfish (Holocentrus rufus)	None v
0203	Squirrelfish (Holocentrus adscensionis)	None ~
		None ~ Number seen
0203		
0203 Family	Surgeonfish (Acanthuridae)	Number seen

REEF

Introduction

- Fisheries stock assessments incorporate size data
 - Reflect population age structure and change, reproductive potential, biomass
- Lengths traditionally obtained via harvest or handling
 - Loss of fish or induces stress
 - Limited distribution of sizes and species
- Existing *in situ* methods is limited to scientists

