

# Southeast Fisheries Science Center SAFMC Update – September 2011 Report on the SEFSC Fisheries Independent Monitoring Program

Southeast Fishery-Independent Survey (SEFIS)

NOAA FISHERIES SERVICE





# SouthEast Fishery-Independent Survey (SEFIS)

- Background / History
- SEFIS program overview
- 2010-2011 accomplishments
- Video as a survey gear; implications for assessments





# South Atlantic Fishery Independent Monitoring Program Workshop

- November 2009
- Decreasing availability of fisherydependent data
- Diverse participants
- Provided recommendations for fishery-independent survey approaches and levels of effort
- > \$10M in funding recommended for full survey
- Led to the creation of the SouthEast Fishery-Independent Survey (SEFIS) in 2010





#### **Specific objectives of SEFIS**

- Focus on hardbottom-associated species on the continental shelf and shelf-break
- Work cooperatively with MARMAP to increase the number and spatial distribution of samples in US South Atlantic
- Implement video cameras as a survey gear to develop indices of abundance and address trap selectivity
- Map hardbottom habitats to improve survey design
- Perform applied research to inform survey methods and address management issues



## Sampling universe

- Cape Hatteras, NC to Port St. Lucie, FL
- Continental shelf and shelf-break (~ 20-75m depth)
- SEFIS focus in 2010
   and 2011 = GA and FL





# SEFIS sampling approach

- Chevron trapping
- Video cameras affixed to traps
- Multibeam habitat mapping
- Research
  - ROV, longline, fisheries acoustics











#### **SEFIS 2010 results**

- 63 days at-sea
- 480 traps deployed
- 97% of SEFIS traps affixed with video cameras
- 37 areas mapped (377 km²) with multibeam sonar
- 32 ROV dives; red snapper longline survey
- > 200 hours of split-beam sonar surveys









#### **SEFIS 2011 Plans and Progress**

- 12 days at sea on NOAA ship Pisces completed in Florida
  - Mapped hardbottom habitats, which expands sampling universe
  - 130 trap-video samples
- 31 days accomplished on *R/V Savannah*, 10-20 more planned
- ~ 800-1000 trap-video samples likely (from SEFIS and MARMAP sampling combined) each year between NC and FL
- SEFIS resulting in > 100% expansion over recent South Atlantic trap sampling levels (MARMAP)
- Video: used only by SEFIS in 2010; SEFIS and MARMAP beginning in 2011





## Video as a survey gear

- Recommended by 2009 SAFIMP workshop
- Addresses trap selectivity issues
- Used by NMFS and state of Florida in the Gulf of Mexico
- Not previously used as a survey gear in the South Atlantic



#### Video in the Gulf of Mexico

- NMFS: Pascagoula, Panama City
- State of Florida
- Video arrays, stereo cameras
- Video-based indices of abundance developed for many species
  - Red, gag, and scamp grouper
  - Red, mutton, and vermilion snapper
  - Gray triggerfish
- Length information available







#### Video in the US South Atlantic

- Used by SEFIS in 2010, SEFIS and MARMAP in 2011 and beyond
- Cameras on traps, not arrays
- 800-1000 video samples collected each year
- Between Cape Hatteras, NC, and St. Lucie Inlet, FL
- 10 90 m deep
- No length information yet
- Only reading for priority species (n = 107)







# Show 1-2 video clips



#### Counting fish on video clip

Goal: linear relationship between fish counted on video and true abundance around the trap

Methods for counting fish on video:

- 1. Count all fish seen
- 2. Time to first arrival
- 3. Maximum number seen in a single frame
- 4. Mean number from a series of frames







## **Comparison of traps and videos**

- 2010, from GA and FL
- 247 valid trap-video samples
- Presence-absence only

| Common name                | Scientific name         | No. traps present, N(%) | No. videos present, N (%) | % increase on videos | P       |
|----------------------------|-------------------------|-------------------------|---------------------------|----------------------|---------|
| Higher frequency on videos |                         |                         |                           |                      |         |
| Almaco jack                | Seriola rivoliana       | 2 (1)                   | 32 (13)                   | 1500                 | < 0.001 |
| Gray snapper               | Lutjanus griseus        | 0 (0)                   | 38 (15)                   | inf                  | < 0.001 |
| Greater amberjack          | Seriola dumerili        | 2 (1)                   | 33 (13)                   | 1550                 | < 0.001 |
| Gray triggerfish           | Balistes capriscus      | 72 (29)                 | 99 (40)                   | 38                   | 0.046   |
| Hogfish                    | Lachnolaimus maximus    | 0 (0)                   | 9 (4)                     | inf                  | <0.01   |
| Lionfish                   | Pterois volitans        | 0 (0)                   | 8 (3)                     | inf                  | < 0.01  |
| Nurse shark                | Ginglymostoma cirratum  | 0 (0)                   | 11 (4)                    | inf                  | < 0.001 |
| Red porgy                  | Pagrus pagrus           | 52 (21)                 | 88 (36)                   | 69                   | < 0.01  |
| Red snapper                | Lutjanus campechanus    | 40 (16)                 | 83 (34)                   | 108                  | < 0.001 |
| Scamp                      | Mycteroperca phenax     | 1 (1)                   | 29 (12)                   | 2800                 | < 0.001 |
| Vermilion snapper          | Rhomboplites aurorubens | 67 (27)                 | 107 (43)                  | 60                   | <0.01   |
| No statistical difference  |                         |                         |                           |                      |         |
| Black sea bass             | Centropristis striata   | 82 (33)                 | 63 (26)                   | -23                  | 0.13    |
| Gag grouper                | Mycteroperca microlepis | 3 (1)                   | 3 (1)                     | 0                    | 1.00    |
| Red grouper                | Epinephelus morio       | 2(1)                    | 5 (2)                     | 150                  | 0.45    |
| White grunt                | Haemulon plumieri       | 8 (3)                   | 4 (2)                     | -50                  | 0.39    |



#### Challenges of underwater video

- Changes in turbidity and light availability
  - Exclude highly turbid or dark videos
  - Include index of visibility in GLM model
  - Measure visibility directly in the future?
- Videos are selective
  - Miss small fish
  - Cryptic fish difficult to observe
- Video cameras expensive, can be lost in strong currents
- "Reading" videos takes considerable time and thus personnel support
  - 1 video = 1-8 hrs





# How will videos be used to benefit assessments in the US South Atlantic?

- Variance levels and population dynamics will dictate the minimum number of years needed for a usable species specific index
- Indices of abundance likely for a number of species
  - Red snapper, vermilion snapper, red porgy, gray triggerfish, black sea bass, groupers
- Additional species likely with more comprehensive sampling in 2011







#### **Conclusions**

- >100% increase in sample sizes with SEFIS sampling
- Expanded spatial distribution of sampling
- Underwater video will result in improved abundance indices for multiple species
- Must have realistic expectations
  - Current survey efforts are below those recommended by SAFIMP 2009
  - Number of species that will benefit
  - Reading videos = labor intensive
  - Multiple years needed for a robust index

