

SEDAR 76 Update April 2025

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Summary

- April 2023 SEDAR76 Overfished & overfishing using F_{MLY} (Maximum Landed Yield), mean recruitment model
- July 2023 Fit to 2022 landings/discards, F landings & discards projections assume reduction in both, F_{0.1} reference point
 - Concerns over high 2022 Fs, use average F for projections
- October 2 2023 Change SPR calculation to mature biomass and used 40%, use new P*=30%, projections with current discard F levels
- October 24 2023 SPR 40% overfished, not overfishing, rebuilding projections 10 year time frame, short-term, long-term and autocorrelated recruitment scenarios F_{Discards}=F_{current} and F_{Landings}=0

Summary Continued

- February 2024 OFL scenario: Long-term recruitment F_{Discards}=F_{current} F_{Landings} that gives 70% probability rebuild in 10 years; ABC scenario: same as OFL but recent average recruitment
- March 2024 Presented projections to Council
- July 2024 Council requested for 11", 12" and 13" minimum size limits and scenario where discard F is reallocated to landings F (Closed season and show recreational discards exceed allocation)
- October 2024 Concluded projections do not match trends observed for 2022 and 2023, requested 'enhanced projections' using all available data to provide ABC and OFL projections

SEDAR 76 Update

- Minor changes:
 - Data processing (e.g., length & age compositions)
 - Terminal year 2023
- Major model changes
 - General recreational and headboat fleets share selectivity curve
 - Use Beverton-Holt stock recruitment relationship
 - Estimate steepness of BH SRR
 - Recruitment in last 2 years (2022-2023) calculated by BH SRR and mean recruitment deviate from 2014-2021
 - Reference points from F_{MSY} for total harvest in weight (landings and discards)

Updated data

- New terminal assessment year of 2023
- Landings and discards available for all fleets
- Updated CVID index
- Age and length compositions updated
 - Methods changed to follow SEDAR 56 methods that were incorrectly implemented in SEDAR 76

Beverton-Holt Stock Recruitment Relationship

BAM base model – Recruitment

BAM base model – fits to comm landings

BAM base model – fits to rec landings

BAM base model – fits to discards

Year

BAM base model – fits to fishery index

Headboat

BAM base model – fits to survey index

MARMAP blackfish

BAM base model – fits to MARMAP blackfish length and age composition

Length Comp MARMAP blackfish

BAM base model – fits to SERFS age composition

BAM base model – Survey selectivity

BAM base model – fits to commercial handline length and age composition

Length bin (mm)

BAM base model – fits to commercial pots length and age composition

Length Comp commercial pots

BAM base model – Commercial selectivity

BAM base model – fits to Headboat length and age composition

Length Comp general recreational

BAM base model – fits to general recreational length composition

BAM base model – Recreational selectivity

Headboat and General Recreational Selectivity

BAM base model – fits to Headboat discards length composition

BAM base model – Discard selectivity

BAM base model – Weighted selectivity

Age

BAM base model – Abundance at age

BAM base model – Biomass at age

BAM base model – Spawning stock

BAM base model – Fishing mortality

BAM base model – Equilibrium Landings and

Page 32 U.S. Department of Commerce | National Oceanic and A

Discard

Fishing mortality rate

BAM base model – Per recruit

Spawning Potential Ratio

BAM base model – Phase plot

Page 34

Age Structure Compared to Equilibrium

Page 35 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

BAM base model – Log RO Profile

BAM base model – Natural mortality sensitivity

BAM base model – Discard mortality sensitivity

BAM base model – Previous assessments

Characterizing uncertainty: Monte Carlo/Bootstrap Ensemble (MCBE)

- Bootstrap the data
 - Multinomial resampling of age and length compositions
 - Multiplicative lognormal error on indices and removals
- Monte Carlo draws
 - Natural mortality: Drawn from U(0.22, 0.6)
 - Discard Mortality: Drawn from fleet specific truncated gamma distribution
 - Index weights : Drawn from U(1.875, 3.125) as in SEDAR 56
- 4000 model fits
 - 3343 (83.6%) trials converged with parameters away from bounds

MCBE – Relative spawning stock

MCBE – Fishing mortality

MCBE – Management quantities

MCBE – Status Indicators

Quantity	Units	Estimate	Median	SE
F _{MSY}	y^{-1} y^{-1}	0.32	0.33	0.15
$75\%F_{MSY}$	y ⁻¹	0.24	0.25	0.11
B _{MSY}	1000 lb	23946.38	31774.95	47522.56
SSB _{MSY}	1E10 eggs	14182.85	14546.38	37762.97
MSST	1E10 eggs	8864.28	7574.79	28417.79
MSY	1000 lb	1956.49	2148.97	3685.48
MSY	1000 dead fish	1154.26	1008.55	2130.65
$L_{75\%MSY}$	1000 lb	1308.81	1047.19	2875.41
L_{current}	1000 lb	508.00	509.39	67.39
D_{MSY}	1000 lb	685.83	1093.68	966.57
D_{MSY}	1000 dead fish	1485.11	2426.36	2078.38
T_{MSY}	1000 lb	2642.32	3249.55	4547.01
T_{MSY}	1000 dead fish	2639.36	3420.59	3896.09
$D_{75\%MSY}$	1000 dead fish	594.71	2127.04	1819.98
D_{current}	1000 dead fish	947.46	1255.76	540.76
R_{MSY}	millions fish	8.67	16.61	14.38
$F_{2021-2023}/F_{MSY}$		4.08	3.11	2.45
SSB ₂₀₂₃ /MSST		0.16	0.27	0.22
SSB ₂₀₂₃ /SSB _{MSY}	_	0.10	0.15	0.09

Summary of assessment results

- SA black seabass is overfished/depleted (99.7%)
- Overfishing is occurring in terminal years (89.3% of MCBE runs)
- Natural mortality and discard mortality are important sources of uncertainty in this assessment
 - Though stock status is robust to range used in this assessment
- Pattern of low recruitment since 2014
 - Appears to be an increase in mortality across all ages

Projections Changes

- Use BH SRR for recruitment forecasting
- Recruitment for 2024-2028 assumes recent mean recruitment deviate with stochasticity from Beverton-Holt relationship
 - 2029 and after assume BH with stochasticity
- F_{MSY} and P^{*}_{30%} scenarios assume discards reduced proportionally with landings
 - P^{*}_{30%} scenarios assumes a 93.4% reduction in discards compared to 2023

Projection Scenarios

- 1. F_{current}
- 2. F_{MSY}
- 3. P^{*}_{30%} F_{MSY}
- 4. F_{40%}
- 5. $P^*_{30\%} F_{40\%}$
- 6. F_{30%}
- 7. $P^*_{30\%} F_{30\%}$
- 8. F = 0
- 9. F_{Landings}=0 & F_{discards}=F_{current}

Page 52 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

F_{MSY} Values

Table 21. Projection results with fishing mortality rate fixed at $F = F_{MSY}$ starting in 2027 and a recent average recruitment deviate until 2028. R = number of age-0 recruits (in millions), F = fishing mortality rate (per year), S = spawning stock (1000 lb), L = landings and D = discardsexpressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension b indicates expected values (deterministic) from the base run; the extension med indicates median values from the stochastic projections.

Year	R.b	R.med	F.b	F.med	S.b	S.med	L.b(n)	L.med(n)	L.b(w)	L.med(w)	D.b(n)	D.med(n)	D.b(w)	D.med(w)	pr.reb
2024	6	14	1.287	1.047	1114	1531	166	182	132	151	610	796	260	341	0
2025	5	11	1.287	1.047	959	1307	171	174	144	149	512	668	226	290	0
2026	4	9	1.287	1.047	763	1062	155	150	134	132	384	534	175	236	0
2027	4	7	0.316	0.334	659	928	42	52	38	46	82	159	38	71	0
2028	3	7	0.316	0.334	674	914	53	62	52	59	76	149	36	70	0

$P^*_{30\%}$ F_{MSY} Values

Table 22. Projection results with fishing mortality rate fixed at $F = P_{30\%}^* F_{MSY}$ starting in 2027 and a recent average recruitment deviate until 2028. R = number of age-0 recruits (in millions), F = fishing mortality rate (per year), S = spawning stock (1000 lb), L = landings and D = discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension b indicates expected values (deterministic) from the base run; the extension med indicates median values from the stochastic projections.

Year	R.b	R.med	F.b	F.med	S.b	S.med	L.b(n)	L.med(n)	L.b(w)	L.med(w)	D.b(n)	D.med(n)	D.b(w)	$\mathrm{D.med}(w)$	pr.reb
2024	6	14	1.287	1.047	1114	1531	166	182	132	151	610	796	260	341	0
2025	5	11	1.287	1.047	959	1307	171	174	144	149	512	668	226	290	0
2026	4	9	1.287	1.047	763	1062	155	150	134	132	384	534	175	236	0
2027	4	7	0.232	0.246	665	938	32	39	29	35	61	119	28	53	0
2028	3	7	0.232	0.246	698	951	42	50	41	48	58	113	28	54	0

Page 57 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

2028

2028

2028

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Page 58

Overall Conclusions

- Stock is very overfished and undergoing extreme overfishing
- Addition of more years of data and continued decline of stock allowed for estimation of steepness
- F_{MSY} estimated by the model corresponds to an SPR $F_{61\%}$
- Immediate and drastic action must be taken to stop the overfishing and prevent the continued decline of the stock
- Projections suggest that stopping all landings and continuing with current discards would not allow for rebuilding of the population