Evaluating the Efficacy of Descender Devices in Increasing the Survival of Deepwater Groupers Using Telemetry

BRENDAN J. RUNDE* & JEFFREY A. BUCKEL

NORTH CAROLINA STATE UNIVERSITY, 303 COLLEGE CIRCLE, MOREHEAD CITY, NC

Acknowledgements

P. Rudershausen, J. Krause, C. Luck, R. Lyon, UNCW R/V Cape Fear, SeaQualizer, N. Wegner, J. Curtis, C. Conroy.

Discards and trauma – overall trends

Reasons for discards – regulations

- Size limits
- Bag limits
- Seasonal closures
- Total closures

Potential causes of injury \rightarrow mortality

- Exhaustion or fatigue
- Water column predators
- Barotrauma

Immediate mortality is easier to determine – severe injuries, floating

Delayed is difficult – better estimates needed in US southeast

Time

Photo: Personal

Deepwater groupers

Scamp

Snowy

grouper

Speckled hind

Deeper water → severe barotrauma

- Higher discard mortality rates (near 100%)
- Some regulations reflect this rate
 - $^\circ\,$ e.g. no size limit for snowy grouper

Can we increase survival by forced recompression using a descender device?

Acoustic telemetry methods

- Conventional tagging would not be effective low sample sizes
- V13AP tags record acceleration and depth
- \circ Behavior \rightarrow proxy for fate (survival or death)
- External attachment to avoid venting, long deck time, anesthesia

Recompression – SeaQualizer

Device attached to lower jaw

Photos: Personal, Pat Lyon

Lead weights

(This is a video)

NC STATE UNIVERSITY

CMAST

Acoustic receiver deployment

• VR2W receivers moored to SubSeaSonics acoustic releases (AR-50-AA)

60,000 detections over 44 days

	А	В	С	D	E	F	G	Н	1	J
1	Date and Time (UTC)	Receiver	Transmitter	Transmitter Name	Transmitt	Sensor Value	Sensor Unit	Station Na	Latitude	Longitude
2	8/17/2015 10:18	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	0.0002	m			
3	8/17/2015 11:33	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	0.0002	m			
4	8/17/2015 11:36	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	4.9011	m/s²			
5	8/17/2015 11:38	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
6	8/17/2015 11:41	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.05766	m/s²			
7	8/17/2015 11:43	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
8	8/17/2015 11:46	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.05766	m/s²			
9	8/17/2015 11:50	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.05766	m/s²			
10	8/17/2015 11:54	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
11	8/17/2015 11:56	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
12	8/17/2015 11:58	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.8272	m			
13	8/17/2015 12:00	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
14	8/17/2015 12:02	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
15	8/17/2015 12:04	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
16	8/17/2015 12:08	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
17	8/17/2015 12:11	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
18	8/17/2015 12:12	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
19	8/17/2015 12:17	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
20	8/17/2015 12:20	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
21	8/17/2015 12:22	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.8272	m			
22	8/17/2015 12:24	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
23	8/17/2015 12:26	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.8272	m			
24	8/17/2015 12:27	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.01922	m/s²			
25	8/17/2015 12:28	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.8272	m			
26	8/17/2015 12:30	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.03844	m/s²			
27	8/17/2015 12:32	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
28	8/17/2015 12:34	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.01922	m/s²			
29	8/17/2015 12:36	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.8272	m			
30	8/17/2015 12:38	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.01922	m/s²			
31	8/17/2015 12:39	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			
32	8/17/2015 12:41	VR2W-102532	A69-9004-1892	Control 1 acc	1221344	0.01922	m/s²			
33	8/17/2015 12:44	VR2W-102532	A69-9004-1893	Control 1 depth	1221344	95.2207	m			

Day

NC STATE UNIVERSITY The Center for Marine Sciences and Technology

NC STATE UNIVERSITY The Center for Marine Sciences and Technology

Kaplan-Meier survival changes with time

Day of Survival Cutoff Period

Conclusions

- Recompression appears to promote survival
- Management implications
- Gear requirements in regulations not unprecedented
 - Circle hooks, dehooking tools, venting
- Future work
 - ° Grant proposal to repeat study with control group
 - More transmitters, more receivers try to detect fish for longer periods (fewer emigrations)

