South Atlantic Region EwE Ecosystem Model

Red Snapper High Recruitment Ecosystem Sensitivity Analysis Results

Lauren Gentry, FWRI Dr. Luke McEachron, FWRI Shanae Allen, FWRI Dr. David Chagaris, University of Florida

SAFMC-SSC, October 2021

Model Background	Results	Workshop Conclusions
EwE/Model Intro	Ecopath insights	Overall Conclusions
Red snapper inputs	Ecosim results	Improvements
Specific modifications	Workshop scenarios	Future

Ecopath with Ecosim and Ecospace (EwE)

Ecosim Time Dynamics

Ecospace pace-Time Dynamics

• Ecopath

- Mass-Balance Snapshot
 - Prey mortality is predator consumption
 - Groups are linked via diet
- Key groups, system size, flows
- Best Practices (Link et al. 2010)
 - E.g., most biomass should be found at lower trophic levels
- Builds the foundation for Ecosim and Ecospace

Table 1. Ecological and fisheries related indicators used in this comparison.										
Acronym	Indicators	Units	Definition							
Ecological indicators										
тят	Total System Throughput	t·km ⁻² ·y ⁻¹	The sum of all the flows through the ecosystem							
PP/TST	Primary production/TST		Primary production over the sum of all the flows through the ecosystem							
FD/TST	Flows to Detritus/TST		Flows to detritus over the sum of all the flows through the ecosystem							
Q/TST	Total consumption/TST		Total consumption over the sum of all the flows through the ecosystem							
R/TST	Total respiration/TST		Total respiration over the sum of all the flows through the ecosystem							
Ex/TST	Total exports/TST		Total exports of the system over the sum of all the flows through the ecosystem							
PP/P	PP/Total Production		Primary production over total production							
MeanPz (MaxPz)	Mean (Max) proportion of total mortality due to predation		The mean (or Maximum) proportion of each group's total mortality that was accounted for by each predator							
meanEE	Mean Ecotrophic Efficiency	%	Ecotrophic efficiency of a group is that proportion of the production that is utilized in the system.							

• Ecopath

• Ecosim

- Estimate time dynamics
- Predator-prey interactions are not random and occur in 'arenas'
- Only a fraction of prey is available for consumption (i.e., vulnerable)

• Ecopath

• Ecosim

- Estimate time dynamics
- Predator-prey interactions are not random and occur in 'arenas'
- Only a fraction of prey is available for consumption (i.e., vulnerable)

Predator density (P)

lowe

Ecopath Input Sources

Age Groups: Red Snapper Age 0 Red Snapper Age 1-3 Red Snapper Age 4+	Corresponded to ontogenetic shifts in habitat, diet, fecundity, and fishing mortality from SEDAR 73. TL (mm): <250 , 250-550 , >550 Weight (lbs): 0-1, 1-6, 6+
Biomass	SEDAR 73 1995
Total Mortality	 Estimated growth across monthly ages Applied Lorenzen estimator scaled to M_{target} = 0.13 Used mid-year M plus F for Z
Consumption rate	Fishbase

Diets

Primarily from SEAMAP, NOAA, and published literature

*Also found single predation events in BBC videos, Okeanos livestreams, photo catalogues, etc.

									inviros Bi	id Fish							
Table 1 Dist composition for	young o	(the yes	r (≤100 em fo	ek 1	Table 1 (con	timed)											
(SiN), percent weight (SW), p	bearent bearent	fraguency	y of occurrent	ce 1	Young-of-the	yew					Pub	lished sto	mach con	tents - %W			
(%O), and index of relative (%B2). Omission of any catego properties the distribute \$5.00	portes ind	nor on i Scores th	a percent bas at prey was to	66 I	Prey Itan		53	- SW	50	500							
Your of the sear				- '	Order Pice	mediloma										г.	comple of
Pey has	55	SW	50 58	81	Comus P Paral	lanaliseksiya Kelakya sehineg	0.8 w 0.2	0.06	3.37	0.00						E	kample of 1
Rich.			10.07 6.10	-	Order Tete	odonilomes	2.4	13.8	9 18.87	3.00							
Order Passeriformes			20.04 0.47		Genu	s Lactophys	0.8	1.68	7.55	0.18						-	
Moiothe varie Unit Biolo	0.21	0.35	1.89 0.00		Family	Fetraodontidae	0.6	2 1.64	3.77	0.08							Functional Groups
Caphalopeds	0.62	0.01	5.66 0.00		Genu	Chikoyears	a 0.6	3.61	5.66	0.23						High	v migratory pelagics
Unid. Cepholopoda Celderlana	0.41	<.01	3.77 0.00	2	Ch	ikwychranad	loopf 0.4	2.92	3.77	0.12						Seat	urtles
Class Antherea	0.41	0.35	1.89 0.00		Family 1	Friglidae	5.8	5.66	24.53	2.73					\frown	Dem	ersal coastal omnivores
Arthropods	5.80	2.87	35.85 3.00		Genu	Prionotar	3.3	2.78	11.32	0.67	1					Othe	r deep grouper
Class Malacentrace	4.76	2,49	30.19 2.12	2	Family 1	uliiformen Sphichthidae	0.2	0.06	1.89	0.01						Echin	oderms and gastropods
Order Decapoda	2.90	2,47	26.42 1.38		Order Silu	itomes	0.8	0.98	1.89	0.03						Smal	coastal sharks
Family Portandae Ovalpes ocellates	0.83	0.61	7.55 0.14		Order Aulo Eamily 1	pitomes involucidae	1.6	4.80	7.65	0.47	マ	7				Pela	ic oceanic piscivores
Family Skyonidae					Dack	incephalar m	yope 1.0	1.56	3.77	0.10						Dem	ersal coastal invertivores
Skyonia breveniter Oslav Mysida	0,41	0.03	3.77 0.00		Space Unit Talana	læ foetens	0.2	1 2.95	1.89	0.06						Offsh	ore dolphins
Other Eleanobranchs	1.24	0.60	7.55 0.13	i i	P				5 31.14			D	6			Birds	- Wading piscivores
Family Rajidae	1.04	0.58	5.66 0.00		·					Α		В	C	L		Pela	tic coastal piscivores
Mammala	0.41	3.53	3.77 0.14		a 1				Air	000	ot al 2017 "E	ooding habits	of the tiger char	rk. Galaacarda cuwia	r in the porthwest /	Birds	- Shelf piscivores
Order Cetacon	0.21	1.97	1.89 0.04		· ·				All	les		eeuing nabits	of the tiger sha	k, Galeoceruo cuvie	r, in the northwest /	Bent	hic coastal invertivores
Molharcs	56.1	1 36.50	58.94 45.7	, 79	2	Loc	atio	n				Sample size	Units	Factors		Sent	nic coastal piscivores-
Class Gastropoda	55.6	9 36.40	49.06 43.8	15	s <u>~</u>	LUC	atio					Sumple Size	onnes	Tuctors		Red s	inapper
Family Natiodae Sinan perspectivan	6.00	2.81	3.66 0.30		3	SAR	/GC	M				169	% weight	Most were adults		Auxis	mackerels
Family Buccinidae	0.83	0.35	1.89 0.02	2			,									Pela	ric rays
Unid. Gastropoda Unid. Mollues	48.6	0.09	1.89 0.00	50							Origina	Data		Changes and	Calculations	Blue	fish
Planes	0.62	0.09	3.77 0.00		4						Oligina	Πυατα		Changes and	calculations	Birds	- Shorebirds
Unid. Parm Telesots	0.41	0.09 8 43.95	1,89 0.00	38	5 -					- 41		0()4(Descention	Nov. Frankland	Course Development	Othe	sciaenids
Order Perciformes					5				_ L	atii	n	% VV	Proportion	New Functional	Group Decision	Birds	- Shelf invertivores
Family Scontinulae Order Clupeiformes	0.21	1.62	1.89 0.00	' I	6	Llurd					nia	2.07	0.0207	Chalfplachuaras		Pela	lic planktivores
Family Chupsidae	0.41	0.48	3.77 0.00		6	нуа	rop	rog	ne	cas	pia	2.07	0.0207	Shelf piscivores		Encru	sting fauna
Order Lophitismes Genus Opcocephalar	0.41	4.11	3.77 0.17	, (7	Ord	or C	ha	rad	riife	armos	0.20	0 0029	Shorehirds		Rock	shrimps
					° /	oru	erc	IId	au	i ilite	Jimes	0.23	0.0029	Shorebirds		Ocea	n triggerfish
					8	Teu	thid	а				0.02	0.0002	Squids		Gray	triggerfish
					Ŭ	1 C G						0101	010002	oquius		Blue	crabs
					9	Ant	hoz	Dа				0.25	0.0025	Encrusting fauna		Dem	ersal rays/skates
					10											Biret	lic oceanic invertivores
					10	Ova	lipe	s st	tepl	hen	isoni	0.13	0.0013			Etom	ves/oysters
					44	C:					auto.	0.47	0.0047			Mag	stopous
					11	Sicy	oni		revi	ros	tris	0.47	0.0047			Mars	humentebiate predators
					12	Stor	mat	on	ade			0.16	0.0016			INIGES	rvegetation
					12	510	nau	opu	Jus			0.10	0.0010				
					13	Call	inec	tes	sa	pid	us	0.4	0.004				Metadat
					10	cum			- 54	p.u	21 Y	0.	0.004	1			wielauat

final diet list

Highly migratory pelagics	0.144299
fan hutlan	
sea turties	0.1217
Demersal coastal omnivores	0,1072
Other deep grouper	0.0917
Echinoderms and gastropods	0.0626
Small coastal sharks	0.056
Pelagic oceanic piscivores	0.0516
Demersal coastal invertivores	0.045801
Offshore dolphins	0.0442
Birds - Wading piscivores	0.0418
Pelagic coastal piscivores	0.0417
Birds - Shelf piscivores	0.0228
Benthic coastal invertivores	0.0209
Benthic coastal piscivores	0.0199
Red snapper	0.0183
Auxis mackerels	0.0129
Pelagic rays	0.0115
Bluefish	0.0113
Birds - Shorebirds	0.0075
Other sciaenids	0.0069
Birds - Shelf invertivores	0.0067
Pelagic planktivores	0.0066
Encrusting fauna	0.0062
Rock shrimps 1	0.0047
Ocean triggerfish	0.00425
Gray triggerfish	0.00425
Blue crabs	0.004
Demersal rays/skates	0.002
Benthic oceanic invertivores	0.002
Bivalves/oysters	0.0018
Stomatopods	0.0016
Mega-invertebrate predators	0.0013
Marsh vegetation	0.0011

*Multiple species in a group are averaged together in the final matrix

a Scoring

					Score (0	-6)		
Group #	Group Name	Individual species	Sample size	Year	Location	Diet richness	Detail	Ecological role?
62	Red grouper	red grouper	1	5		6 1	1 4	Ecosystem engineer

Red Snapper Diets

Source	N (stomachs with food)	Location	Age Group		
SEAMAP	219	SAR	Age 1-3, Age 4+		
FWRI-FIM Gut Lab	244	SAR/GOM	Age 0		
FWRI-FIM Gut Lab	171	SAR/GOM	Age 1-3, 4+		
Szedlmayer and Lee 2004	789*	GOM	Age 0		
Szedlmayer and Lee 2004	789*	GOM	Age 1-3		
Tarnecki and Patterson 2015	343	GOM	Age 1-3, 4+		

Cross-referenced

- Spanik, K. et al (2021) "Using DNA barcoding to improve taxonomic resolution of the diet of red snapper (Lutjanus campechanus) along the Atlantic coast of the southeastern United States" Fish. Bull. 119: 123-134
- Spanik, K. (2018) "Improving Diet Resolution for Reef-Associated Large Piscivorous Predators in the U.S. Southeast Atlantic Using Molecular Tools" Dissertation College of Charleston
- McCawley, J. R., J. H. Cowan Jr. and R. L. Shipp (2006) "Feeding Periodicity and Prey Habitat Preference of Red Snapper, *Lutjanus campechanus* (Poey, 1860) on Alabama Artificial Reefs" Gulf of Mexico Science 24 (1).
- Wells, R.J.D., Cowan J.H., Jr, Fry, B. (2008) "Feeding ecology of red snapper *Lutjanus campechanus* in the northern Gulf of Mexico" Mar Ecol Prog Ser 361:213-225
- Ouzts, A.C. and S. Szedlmayer (2003) "Diel Feeding Patterns of Red Snapper on Artificial Reefs in the North-Central Gulf of Mexico" Transactions of the American Fisheries Society, 132:6, 1186-1193
- Others

Szedlmayer, S. and J. Lee (2004) "Diet shifts of juvenile red snapper (Lutjanus campechanus) with changes in habitat and fish size" Fish. Bull. 102: 366-375

Tarnecki, J and W. Patterson III (2015) "Changes in Red Snapper Diet and Trophic Ecology Following the Deepwater Horizon Oil Spill", Marine and Coastal Fisheries, 7:1, 135-147

Red Snapper Diets - Comparison

FWRI Gut Lab Age 0 + Szedlymayer 2004 Age 0

SEAMAP (Age 1-3, 4+) - SAR

Szedlymayer 2004 (Age 1-3) - GoM

0.4

Question from Workgroup: What would happen if you weighted SAR vs. GoM diets 80/20? Q: What would happen if you weighted SAR vs. GoM diets 80/20?

	% Diet Change with SAR vs	. GOM weighted (>1% only)							
	Age 1-3		Age 4+						
9%	Other grunts	5%	Other grunts						
5%	Herrings	2%	Herrings						
4%	Benthic oceanic invertivores	2%	Benthic oceanic invertivores						
2%	Benthic oceanic piscivores	1%	Benthic oceanic piscivores						
1%	Scads	1%	Scads						
1%	Black seabass	-1%	Penaeid shrimps						
1%	Octopods	-1%	Stomatopods						
-1%	Anchovies	-1%	Mega-invertebrate predators						
-1%	Rock/Bank seabass	-4%	Small mobile epifauna						
-1%	Penaeid shrimps	-5%	Other zooplankton						
-2%	Demersal coastal omnivores								
-2%	Other shallow snapper								
-3%	Small mobile epifauna								
-3%	Other zooplankton								
-4%	Benthic coastal invertivores								
-6%	Squids								

Predators

Predator	Ages	Citation
Large coastal sharks	Age 0, 1-3, 4+	Blacktip shark Castro 1996 – SAR "Snappers" Tiger shark Aines et al 2017 – SAR/GoM, ID'd to species
Adult king mackerel	Age 0, 1-3	Saloman 1983 NOAA technical - SAR ID'd to species Had gray, lane, yellowtail, vermilion in stomach
Benthic oceanic piscivores	Age 0	Shortjaw lizardfish FWRI-FIM GoM "Lutjanidae"
Other shallow snapper	Age 0	Cubera Randall 1967 - Puerto Rico/Virgin Isles "Snappers such as lane, gray, muton, red"
Vermilion snapper	Age 0	SEAMAP Offshore - "juvenile snapper"
Black seabass	Age 0	SEAMAP Offshore - "Lutjanus sp." Also had vermilion in stomach
Great barracuda	Age 0	Randall 1967 – Puerto Rico/Virgin Isles "Red snapper" Had 5 other snapper species in stomachs
Birds – shelf piscivores	Age 0	Lamb 2016 – GoM FL – ID'd to species Regurgitated fish found in chicks' nests

Red Snapper Ecopath Input Sources

Landings

2020: Landings were collected independently from ACCSP, MRIP, and SRHS Separated by fleet

Now: Used landings from SEDAR 73 -Estimates were slightly higher (only 6 tons more) Used proportions from 2020 estimates to re-calculate fleet totals

Discards

2020: Released-alive discards from MRIP, with discard mortality rate applied by fleet Commercial discards were 20% of landings

Now: SEDAR 73 already estimated released-alive discards, only reports Dead Discards Ergo, discard mortality rate is 100%

Predicts values for Prey Overlap and Predator Overlap separately

- Uses a modified version of the Pianka 1973 method (arithmetic rather than geometric mean)
- Ranges from 0 (no overlap) to 1 (total overlap)
- **Prey Overlap:** uses the fraction each prey contributes to the two predators' diets
- Predator Overlap: uses the fraction a predator contributes to the total predation on two groups
 - Calculated using each predator's consumption (Q) and the proportion each prey contributes to the predator's diet

Prey Overlap

$$O_{jk} = \sum_{i=1}^{n} (p_{ji} \cdot p_{ki}) / (\sum_{i=1}^{n} (p_{ji}^{2} + p_{ki}^{2}) / 2)$$

Predator Overlap

$$X_{nl} = Q_i P_{ln} / \sum_{l=1}^{n} (Q_l \cdot P_{ln})$$
$$X_{ml} = Q_i P_{lm} / \sum_{l=1}^{n} (Q_l \cdot P_{lm})$$

$$P_{mn} = \sum_{i=1}^{n} (X_{ml} \cdot X_{nl}) / (\sum_{l=1}^{n} (x_{ml}^2 + x_{nl}^2) / 2$$

 O_{ik} = overlap of predators *j* and *k*

P_{ji} = proportion that prey *i* contributes to the diet of predator *j*

 P_{ki} = proportion that prey *i* contributes to the diet of predator *k*

 X_{nl} = fraction that predator *l* contributes to the total predation on prey *n*

 X_{ml} = fraction that predator *l* contributes to the total predation on prey *m*

 P_{mn} = Predator Overlap of preys *m* and *n*

Red Snapper Age 0 Prey Overlap

Red Snapper Age 1-3 Niche Overlap 100 red snap age 4 75 dogfish sharks , oth mid shelf snap 🧕 benthic ¢oastal invert dem coastal omniv Prey Overlap (%) benthic coastal pisc oth deep gr red gr yellowtail snap vermilion snap dem lays skates dem coastal pisc -red snap age 0 snowy gr nassau gr benthic oceanic bisc drav snap 50 oth shallow snap oth shallow gr tilefish o black seabass oth porgys lane snap small coastal sharks halfbeaks lg coasta sharks goliath gr 25 gag gr 0 pelagic rays

Predator Overlap (%)

25

0

75

100

Red Snapper Age 1-3 Prey Overlap

Mixed Trophic Impacts

Tool for exploring ecosystem structure

- Allows elements to interact in feedback loops
- Assesses the effect of a very small increase of one group's biomass on each other group's biomass
- Sum of direct and indirect impacts (predation, competition, etc.)
- Values are not concrete, but are relative and comparable across groups
- *Reflects impacts in a steady-state system*

Mixed Trophic Impacts

Tool for exploring ecosystem structure

- Allows elements to interact in feedback loops
- Assesses the effect of a very small increase of one group's biomass on each other group's biomass
- Sum of direct and indirect impacts (predation, competition, etc.)
- Values are relative but comparable
- *Reflects impacts in a steady-state system*

Ecosim inputs

Time series of primary productivity

- Satellite-derived Chlorophyll a
- Calibrated by NASA from both MODIS and SeaWiFS satellites

Catch time series

- SEDAR for red snapper reference only
- ACCSP, MRIP, SRHS for other species (104 groups) forced

Biomass time series – reference only

SEDAR stock assessments for assessed species (12 groups)

WPUE time series

• SEAMAP (33 groups)

Fishing Mortality time series (Red snapper only)

- SEDAR 73: Catch/Biomass by age group
- Forcing time series drives the estimates

Vulnerability fitting

Systematic process to calculate vulnerabilities of prey to predators (lowest SS)

- Vulnerabilities scale prey mortality to predator density
- Modify vulnerabilities/inputs to fit model predictions to time series of particular interest

- Vulnerabilities scale prey mortality to predator density
- Modify vulnerabilities/inputs to fit model predictions to time series of particular interest

Red Snapper Fits Age 1-3 Biomass Age 4+ Biomass 0.0035 0.0040 o 0.0030 0.0035 0.0030 o 0.0025 0.0025 00 o 0.0020 t/km² t/km² 0 o 0.0020 o 。° ° ° 0.0015 0.0015 ο 0.0010 000 0.0010 ο. o o 0.0005 o o 0.0005 0.0 ó 0.0000 0.0000 1995 2000 2005 2010 2015 2015 1995 2000 2005 2010 Time Time

Vulnerability fitting

Other Species' Fits

Long-term Average Recruitment

- Set F to 0.0188 from 2017 to 2044
 - Both Age 1-3 and 4+
 - Allows red snapper to recover
 - Total 2044 biomass = SEDAR predicted 2044 biomass under long-term recruitment (Scenario 7 from July SSC presentation)

High Recent Recruitment

• Set F to 0.0188 from 2017 to 2044

AND

- Added forcing function to vulnerabilities of Age 0 Red Snapper's prey
 - Increasing vulnerability makes prey mortality more closely linked to predator density
 - Increases vulnerability of their prey to predation
 - Used biomass estimates from SEDAR73 to direct the shape
 - Simulates high recruitment of juveniles to older age groups

High Recent Recruitment

• Set F to 0.0188 from 2017 to 2044

AND

- Added forcing function to vulnerabilities of Age 0 Red Snapper's prey
 - Increasing vulnerability makes prey mortality more closely linked to predator density
 - Increases vulnerability of their prey to predation
 - Used biomass estimates from SEDAR73 to direct the shape
 - Simulates high recruitment of juveniles to older age groups

High Recent Recruitment

• Set F to 0.0188 from 2017 to 2044

AND

- Added forcing function to vulnerabilities of Age 0 Red Snapper's prey
 - Increasing vulnerability makes prey mortality more closely linked to predator density
 - Increases vulnerability of their prey to predation
 - Used biomass estimates from SEDAR73 to direct the shape
 - Simulates high recruitment of juveniles to older age groups

High Recent Recruitment

• Set F to 0.0188 from 2017 to 2044

AND

- Added forcing function to vulnerabilities of Age 0 Red Snapper's prey
 - Increasing vulnerability makes prey mortality more closely linked to predator density
 - Increases vulnerability of their prey to predation
 - Used biomass estimates from SEDAR73 to direct the shape
 - Simulates high recruitment of juveniles to older age groups

Status Quo

- Arbitrary low biomass
- Set F to 0.1 for 2017-2044
 - Age 4+ only
 - Keeps total populations around the 2016 biomass
 - Allows us to see the impacts of 3 levels of Red Snapper biomass

Scenario Testing (Example only)

3 Red Snapper Biomass Scenarios

Scenario Testing (Example only)

Longterm vs. High

Long-term Average Recruitment

High Recent Recruitment

Long-term Average Recruitment

Long-term Average Recruitment

Status Quo

Scenario Testing Results – Important Species for Management

Long-term Average Recruitment

Question from Workgroup: What would happen if you weighted SAR vs. GoM diets 80/20?

Weighted by sample size and Weighted SAR 80% : GoM 20%

Previous: Weighted only by sample size

Preliminary Results

Question from Workgroup: Are there any interacting effects of catch level on a prey with the impact of high red snapper recruitment on that prey? Question from Workgroup: Are there any interacting effects of catch level on a prey with the impact of high red snapper recruitment on that prey?

Levels of BSB Catch extended from 2017 to 2044

Normal 2016 BSB Catch 610 tons Large 2004 BSB Catch 1520 tons Unrealistically Large BSB Catch 4300 tons

Winners/Losers Under BSB Bigger Catch Scenarios

BSB loss -2.34

BSB loss -2.13

Q: Are there any interacting effects of catch level on a prey with the impact of high red snapper recruitment on that prey? Question from Workgroup: If we change the vulnerabilities of Red Snapper (and thus the biomass of red snapper) do the impacts on other species change in magnitude?

What would it take to get to a 10% decrease in black seabass?

RS Biomass w/ Different Vulnerabliities

	Normal (1x)	1.5x	2x	10x		
Age 0	5	7.5	10	50		
Age 1-3	10	15	20	100		
Age 4+	3.5	5.25	7	350		

Q: If we change the vulnerabilities of Red Snapper (and thus the biomass of red snapper) do the impacts on other species change in magnitude? What would it take to get to a 10% decrease in black seabass? RS Biomass w/ Different Vulnerabliities

"10x" put red snapper biomass off the charts, so it's not included in the next slides

Age 0 RS Biomass w/ Different Vulnerabilities

Age 1-3 RS Biomass w/ Different Vulnerabilities

Age 4+ RS Biomass w/ Different Vulnerabilities

Question from Workgroup: What happens if you make BSB 25% of the red snapper diet?

Increase BSB to 25% of Age 4+ RS Diet

Question from Workgroup: What happens if you make BSB 25% of the red snapper diet?

Increase BSB to 25% of Age 4+ RS Diet

Question from Workgroup: Can we see all winners/losers together?

	Diets (% wet weight)			Prey Overlap (%)			Mixed Trophi	ic Impacts	Scenario Testing (% B)	
Age 0	Age 1-3	Age 4+	Age 0	Age 1-3	Age 4+		Age 1-3	Age 4+	High vs Longterm	
29 Mega-invertebrate predators	16 Other grunts	20 Other grunts	78 Red grouper	81 Red snapper age 4+	81 Red snapper age 1-3	0.003	Other shallow grouper/tilefish	0.004 Golden crabs	2.06 Mutton snapper	
20 Stomatopods	14 Mega-invertebrate predators	16 Mega-invertebrate predators	77 Yellowtail snapper	69 Dogfish sharks	62 Red grouper	0.003	White grunt	0.002 Nassau grouper	1.27 Large coastal sharks	
14 Squids	10 Squids	10 Herrings	76 Demersal rays/skates	67 Benthic coastal invertivores	61 Dogfish sharks	0.002	Spiny lobster	0.001 Halfbeaks	0.71 Benthic oceanic piscivores	
8 Bivalves/oysters	8 Herrings	10 Other zooplankton	74 Dogfish sharks	66 Other mid-shelf snapper	55 Benthic coastal invertivores	0.002	Mutton snapper	0.001 Other mid-shelf snapper	0.63 Gray triggerfish	
5 Small mobile epifauna	7 Benthic oceanic invertivores	8 Benthic oceanic invertivores	72 Golden tilefish	66 Greater amberjack	52 Black seabass	0.002	Lane snapper	0.001 Goliath grouper	0.49 Spiny lobster	
4 Offshore polychaetes	6 Benthic coastal invertivores	7 Small mobile epifauna	72 Red porgy	63 Other deep grouper	52 Other porgys	0.001	Golden crabs	0.001 Gray snapper	0.49 White grunt	
3 Benthic coastal invertivores	4 Other zooplankton	5 Benthic oceanic piscivores	71 Benthic coastal invertivores	59 Benthic coastal piscivores	51 Yellowtail snapper	0.001	Gray snapper	0.001 Lane snapper	0.45 Rock shrimps	
2 Pelagic planktivores	4 Benthic oceanic piscivores	3 Stomatopods	71 Mutton snapper	58 Summer flounder	50 Demersal rays/skates	0.001	Ocean triggerfish	0.001 Other shallow snapper	0.38 Lane snapper	
2 Other zooplankton	3 Small mobile epifauna	3 Scads	Other shallow grouper/tilefish	58 Demersal coastal omnivores	50 Red lionfish	0.001	Goliath grouper	0.001 Stone crabs	0.27 Other shallow grouper/tilefish	
2 Octopods	3 Benthic coastal piscivores	2 Benthic coastal piscivores	70 Rock/bank seabass	57 Red grouper	49 Halfbeaks	0.001	Demersal coastal omnivores	0.001 Mullets	0.23 Gray snapper	
1 Benthic coastal piscivores	2 Rock/Bank seabass	2 Black seabass	67 Other sciaenids	57 Yellowtail snapper	48 Tarpon	0.001	Nassau grouper	0.001 Snook	-0.40 Red lionfish	
1 Anchovies	2 Other shallow snapper	2 Rock shrimps	67 Bonefish	55 Vermilion snapper	48 Greater amberjack	0.0004	Large coastal sharks	0.001 Sunfish	-0.47 Alamco jack	
1 Carnivorous zooplankton	2 Rock shrimps	2 Octopods	66 Cobia	54 Almaco jack	48 Almaco jack	0.0003	Bonefish	0.000 5 Bonefish	-0.58 Greater amberjack	
1 Encrusting fauna	2 Stomatopods	2 Squids	65 Benthic oceanic invertivores	53 Demersal coastal piscivores	47 Golden tilefish	0.0003	Gray triggerfish	0.000 4 Pilot whales	-0.72 Red grouper	
1 Rock shrimps	2 Scads	1 Offshore infaunal crustaceans	63 Lane snapper	53 Red snapper age 0	47 Other grunts	0.0003	Halfbeaks	0.000 4 Bar jack	-0.94 Gag grouper	
1 Penaeid shrimps	2 Demersal coastal omnivores	Benthic coastal invertivores	61 Other mid-shelf snapper	53 Demersal rays/skates	47 Other deep grouper	- 0.0005	Sea turtles	Other deep grouper	-1.63 Scamp grouper	
1 Estuarine infaunal 1 crustaceans	2 Octopods	1 Rock/Bank seabass	61 Goliath grouper	52 Snowy grouper	47 Red porgy	-0.001	Blueline tilefish	0.001 White grunt	-1.76 Other shallow snapper	
1 Estuarine polychaetes	2 Black seabass	1 Penaeid shrimps	61 White grunt	51 White grunt	46 Rock/bank seabass	-0.001	Adult king mackerel	0.002 Blueline tilefish	-2.74 Other grunts	
<1 %Benthic oceanic piscivores	1 Penaeid shrimps	1 Other porgys	60 Nassau grouper	50 Gray snapper	46 Other shallow snapper	-0.001	Scamp grouper	0.002 Greater amberjack	-3.86 Black seabass	
<1 Demersal coastal % piscivores	1 Offshore infaunal crustaceans	1 Echinoderms and gastropods	59 Queen triggerfish	50 Nassau grouper	45 Goliath grouper	-0.001	Red porgy	0.003 Red grouper	-5.94 Rock/bank seabass	
<1 Demersal coastal % omnivores	1 Anchovies	<1% Pelagic planktivores	59 Vermilion snapper	49 Black seabass	44 Red snapper age 0	-0.001	Wreckfish	Adult king mackerel		
<1 %Ichthyoplankton	1 Other porgys	<1% Encrusting fauna	57 Small coastal sharks	49 Other porgys	44 Scamp grouper	-0.001	Gag grouper	0.003 Wreckfish		
<1 Demersal coastal % invertivores	<1 %Encrusting fauna	<1% Other jacks	57 Rock shrimps	48 Benthic oceanic piscivores	43 Nassau grouper	-0.001	Greater amberjack	- Benthic oceanic 0.005 piscivores		
<1 %Estuarine benthic detritus	<1 %Carnivorous zooplankton	<1% Offshore benthic detritus	56 Red drum	48 Pelagic oceanic piscivores	43 Other shallow grouper/tilefish	-0.001	Vermilion snapper	- Scamp grouper		
<1 %Seagrasses	<1 Estuarine infaunal % crustaceans	<1% Red porgy	56 Gray snapper	48 Offshore dolphins	43 Cobia	-0.001	Red grouper	0.007 Gag grouper		
<1 Echinoderms and % gastropods	<1 Echinoderms and % gastropods	<1% Estuarine infaunal crustaceans	55 Black seabass	47 Wreckfish	42 Bonefish	-0.001	Benthic oceanic piscivores	0.007 Rock/bank seabass		
<1 %Benthic meiofauna	<1 %Other jacks	<1% Syngnathids	53 Snowy grouper	46 grouper/tilefish	42 Gray snapper	-0.004	Red lionfish	0.009 Other grunts		
	<1 %Estuarine polychaetes	<1% Demersal coastal piscivores	53 Red snapper age 1-3	45 Other shallow snapper	41 Mutton snapper	-0.006	Black seabass	0.009 Black seabass		
	<1 %Pelagic planktivores	<1% Other sciaenids	52 Other deep grouper	45 Beaked whales	40 Snowy grouper	-0.007	Other shallow snapper	0.018 Red porgy		
	<1 % Offshore benthic detritus	<1% Ichthyoplankton	49 Octopods	44 Halfbeaks	40 Gag grouper	-0.015	Rock/bank seabass	0.020 Red lionfish		

Diets (% wet weight)					Prey Overlap (%)							Mixed Trophic Impacts				Scenario Testing (%∆ B)		
Age 0		Age 1-3		Age 4+	Age 0 Age 1-3			Age 1-3		Age 4+		Age 1-3	F	\ge 4+	High vs Longterm			
Mega- 2 invertebrate 9 predators	1 6	Other grunts	20) Other grunts	78	Red grouper	81	Red snapper age 4+	81	Red snapper age 1-3	0.003	Other shallow grouper/tilefi sh	0.004	Golden crabs	2.06	Mutton snapper		
2 0 Stomatopods	1 4	Mega- invertebrate predators	16	Mega- invertebrate predators	77	Yellowtail snapper	69	Dogfish sharks	62	Red grouper	0.003	White grunt	0.002	Nassau grouper	1.27	Large coastal sharks		
1 4 Squids	1 0	Squids	10) Herrings	76	Demersal rays/skates	67	Benthic coastal invertivores	61	Dogfish sharks	0.002	Spiny lobster	0.001	Halfbeaks	0.71	Benthic oceanic piscivores		
5 Small mobile 9 epifauna	7	Benthic oceanic invertivores	8	Benthic oceanic invertivores	72	Golden tilefish	66	Greater amberjack	52	Black seabass	- 0.001	Adult king mackerel	- 0.005	Benthic oceanic piscivores	0.49	Spiny lobster		
4 Offshore polychaetes	6	Benthic coastal invertivores	7	Small mobile epifauna	72	Red porgy	63	Other deep grouper	52	Other porgys	_ 0.001	Scamp grouper	0.007	Scamp grouper	0.49	White grunt		
Benthic 3 coastal invertivores	4	Other zooplankton	5	Benthic oceanic piscivores	71	Benthic coastal invertivores	59	Benthic coastal piscivores	44	Red snapper age 0	_ 0.001	Red porgy	- 0.007	Gag grouper	0.45	Rock shrimps		
Pelagic ² planktivores	4	Benthic oceanic piscivores	3	Stomatopod s	55	Black seabass	58	Summer flounder	44	Scamp grouper	_ 0.001	Benthic oceanic piscivores	_ 0.007	Rock/bank seabass	-1.63	Scamp grouper		
Other 2 zooplankton	2	Demersal coastal omnivores	3	Scads	53	Snowy grouper	58	Demersal coastal omnivores	43	Nassau grouper	- 0.004	Red lionfish	- 0.009	Other grunts	-1.76	Other shallow snapper		
2 Octopods	2	Octopods	2	Benthic coastal piscivores	53	Red snapper age 1-3	50	Nassau grouper	43	Other shallow grouper/tilef ish	0.006	Black seabass	0.009	Black seabass	-2.74	Other grunts		
Benthic 1 coastal piscivores	2	Black seabass	2	Black seabass	52	Other deep grouper	49	Black seabass	42	Gray snapper	- 0.007	Other shallow snapper	- 0.018	Red porgy	-3.86	Black seabass		

Question from Workgroup: Can we see all winners/losers together?

> The full table is available as page 22 of the EwE Workshop Report, and as a highresolution PDF in the briefing book

Overall model conclusions

1. Model properly addressed the question and demonstrated which species have positive and negative changes in biomass due to Red Snapper recruitment.

- Higher red snapper biomass led to negative changes in biomass to Bank Sea Bass, Black Sea Bass, and other grunts (Tomtate).
- Minor negative changes in biomass were observed for Red Grouper, Gag Grouper, and Scamp
- Positive effects were observed for Mutton Snapper and large coastal sharks

2. The model provided insights on the impacts of Red Snapper management/recruitment on other species (EBFM)

3. Increasing Red Snapper recruitment could increase abundance of some species and lead to decreases for other. Higher Red Snapper recruitment could reduce biomass of black sea bass, but the scale of the impacts is minor (less than 5%).

4. These findings can be used to direct data collection needs such as Red Lionfish, which has minimal biomass in the model in and shows negative impacts. These results could also inform better monitoring of species with high management interest and negative impacts when Red Snapper is increasing, such as black sea bass.

5. Exploration in the model of direct vs indirect impacts can help figure out what might be the driving factor for impacts (e.g., competition vs. predation) or even ways to improve populations (e.g., habitat restoration).

6. These results are on a similar scale to modeling efforts on reef fish from West Florida Shelf. This is likely due to the generalist nature of the species in question.

7. Operationalizing the model could be based on regular data updates which will require re-fitting (1-2 months for very large changes).

8. Development of EwE models is an iterative process and the more the model is explored, the better it will become

Model Team Dr. Luke McEachron - FWRI Shanae Allen – FWRI Dr. Dave Chagaris - UF

Contributors				
SAFMC				
FWC – FWRI				
NOAA – NMFS				
SCDNR				
NCDENR				
GADNR				
ASMFC				
UF				
UNF				
UNC				
NCSU				

142 groups (part 1)

P

S

B

Ν

S

IAMMALS	TAXONOMIC GROUPS	TROPHIC GROUPS	AVES
oastal bottlenose dolphin	Mullets	Highly migratory pelagics	Birds oceanic piscivore
ffshore dolphins	Other sciaenids	Pelagic oceanic piscivores	Birds shorebirds
ilot whales	Sardines	Pelagic coastal piscivores	Birds shelf piscivores
eaked whales	Anchovies	Demersal coastal piscivores	Birds herbivores
perm whales	Silversides	Pelagic planktivores	Birds wading piscivore
aleen whales	Halfbeaks	Demersal coastal invertivores	Birds shelf invertivore
lanatees	Scads	Demersal coastal omnivores	Birds raptors
LASMOBRANCHS	Shad	Benthic oceanic piscivores	REPTILES
lanktivorous sharks	Sygnathids	Benthic oceanic invertivores	Sea turtles
arge coastal sharks	Other shallow grouper/tilefish	Benthic coastal piscivores	PHOTOSYNTHETICS
mall coastal sharks	Other deep grouper	Benthic coastal invertivores	Phytoplankton
ogfish sharks	Other shallow snapper	Benthic coastal planktivores	Microphytobenthos
elagic sharks	Other mid-shelf snapper		Benthic macroalgae
elagic rays	Other jacks		Pelagic macroalgae
emersal rays/skates	Other porgys		Seagrasses
	Other grunts		Marsh vegetation
	Herrings		

es

140 groups (part 2)

SINGLES SPECIES SINGLE SPECIES SINGLE SPECIES CONT. INVERTS GROUPS CONT. Adult king mackerel Permit Auxis mackerels Juvenile king mackerel Atlantic spadefish Blueline tilefish Spanish mackerel **Red Lionfish** Golden tilefish Summer flounder Juv Spanish mackerel Yellowtail snapper Bluefish Southern flounder Mutton snapper Weakfish Gulf flounder Gray snapper Red drum Hogfish Lane snapper Atlantic menhaden Ocean triggerfish Red snapper Age 0 Spotted seatrout Gray triggerfish Red snapper Age 1-3 Striped bass Red snapper Age 4+ Gag grouper Dolphinfish **Red** grouper Greater amberjack Snook Scamp grouper Almaco jack Tarpon Goliath grouper Bar jack Queen triggerfish Cobia Nassau grouper Bonefish Snowy grouper Blue runner Sunfish Black seabass Red porgy Wreckfish **Rock/Bank seabass** White grunt Atlantic mackerel Vermillion snapper Great barracuda

Carnivorous jellies **Encrusting fauna** Squids **Stomatopods** Octopods Blue crabs Horseshoe crabs Golden crabs Spiny lobster **Rock shrimps** Penaeid shrimps Megafaunal predators Echinoderms and gastropods Estuarine infaunal crustaceans Estuarine polychaetes

INVERTS CONT.

Bivalves/Oysters Offshore infaunal crustaceans Offshore polychaetes Small mobile epifauna Calico scallops Benthic meiofauna Deep-burrowing infauna Carnivorous zooplankton Other zooplankton Ichthyoplankton Microbial heterotrophs DEAD Estuarine benthic detritus Offshore benthic detritus Water-column detritus **Dead carcasses**