Community occupancy models for deep sea coral distribution and richness

Holly F. Goyert^{1,2*},

Arliss Winship^{1,2}, Matt Poti^{1,2},

Peter Etnoyer² and John Christensen²

²Biogeography Branch, Marine Spatial Ecology Division National Centers for Coastal Ocean Science (NCCOS) NOAA National Ocean Service (NOS)

Wednesday, 16 Oct 2019

National Oceanic and Atmospheric Administration

U.S. Department of Commerce

*holly.goyert@noaa.gov

Madrepora, Gulf of Mexico 2009 photolib.noaa.gov

Discussion

The state of deep-sea coral and sponge ecosystems of the US (2017): Ch. 8 Predictive habitat modeling

Guinotte JM, Georgian S, Kinlan BP, Poti M, Davies AJ.

NOAA Technical Memo. NMFS-OHC-4

Hourigan TF, Etnoyer PJ, Cairns SD (eds.)

Project Goals and Objectives

- Goal 1: Rescue data
 - Compile presence and **absence** data from surveys
- Goal 2: Improve predictive models and maps
 - Develop and produce predictive spatial models to improve region-wide maps of the distribution of deepwater coral and chemosynthetic communities

From Etnoyer et al. 2017 report to BOEM 4

Introduction

Discussion

Spatial predictive modeling

Discussion

Discussion

Discussion

Discussion

Discussion

Statistical framework

Within-site variation

"replicate" samples
"space-for-time substitution"

"Detection Probability" ("Availability Probability")

Between-site variation **"Occupancy** Probability" - Habitat suitability

How confident are we that observed absences are "true" absences?

Copyright IFREMER

Assumptions of occupancy analysis

- **1. No false positives**: species identified with confidence to lowest taxonomic level possible
- **2. Closure**: sampling time window short relative to the system dynamics (static)
- **3. Independence** of occurrence and detection probability across replicated visits
- **4. Homogeneity** of detection probability: eliminate heterogeneity using observation-level covariate on detectability: effort offset

Discussion

Conservative approach

"If we do not have a balanced design with the same number of replicates at each site, it is best if the number of surveys per site is **randomly allocated** to a site. If it depends instead on some site characteristics, biased estimates may result.

For instance, if multiple surveys are only undertaken at the "**better**" sites, where density and therefore detection probability (*p*) may be higher on average, the resulting estimate of *p* will be biased high with respect to all sites and therefore the occupancy estimator will be biased low".

(Kery and Royle 2016, Applied Hierarchical Models in Ecology)

In a conventional model, occurrence will be biased high.

Why Occupancy analysis?

- Conservative approach ("false negative" analysis)
- Ability to estimate true distribution (standardized)
- Ability to estimate community species richness (multiple species/genera combined into single map)

Discussion

Bayesian hierarchical approach

- Ch. 10 Modeling static occurrence and species distributions using site-occupancy models
- Ch. 11 Hierarchical models for communities

Attachment 10: SSC October 2019 Meeting

Attachment 10: SSC October 2019 Meeting

Discussion

Example community

Branching stony corals: framework-forming Scleractinia

- Madracis
- Lophelia
- Madrepora
- Solenosmilia
- Enallopsammia

Occupancy & Detection Probability

Introduction

Methods

Results

Discussion

Covariate effects: genuslevel

Covariate effects: genuslevel

25

Introduction

Methods

Results

Discussior

Enallopsammia

Framework-forming genus richness

*Draft results for demonstration only 26

Uncertainty

Management applications

https://www.st.nmfs.noaa.gov/ecosystems/ebfm/ebfm-levels

Other management applications

Predicting the offshore distribution and abundance of marine birds with a hierarchical community distance sampling model

Holly F. Goyert,^{1,4} Beth Gardner,¹ Rahel Sollmann,¹ Richard R. Veit,² Andrew T. Gilbert,³ Emily E. Connelly,³ and Kathryn A. Williams³

Discussion

Next steps

- Further model diagnostics
- Model selection/averaging

Discussion

Acknowledgments

NCCOS NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Deep Coral Ecology Lab

Enrique Salgado

Rachel Bassett

Janessy Frometa

Biogeography Branch

Chris Jeffrey Michael Coyne

Bethany Williams

Brian Kinlan

Deep Coral Research & Technology Program

Tom Hourigan

Heather Coleman

Dave Moran Mark Mueller Michelle Nannen

Questions?