THE SOUTH ATLANTIC REGION ECOPATH MODEL

Advancing the Ecopath / Ecosim / Ecospace approach

Tom Okey, Ocean Integrity Research and the University of Victoria Roger Pugliese, South Atlantic Fishery Management Council

SAFMC Scientific and Statistical Committee Meeting 24-26 October 2017

FOOD WEB MODEL

FISHERY-ECOSYSTEM MODEL

PHASE 1- UPDATE SOUTH ATLANTIC ECOPATH MODEL

Activity 1

Refine South Atlantic Ecopath Model - Tom Okey

Activity 2

Data Assembly

- Marcel Reichert

PHASE 2 – CONNECT TO OTHER MODELS

Activity 3

Review of Estuarine Data and Models - Peter Sheng

Activity 4

A Coupled Marine Environmental Assessment and Prediction System for the Southeastern U.S. Coastal Ocean in Support of Effective Marine Ecosystem-Based Management

- Ruoying He

Grant 5

South Atlantic Fisheries Ecosystem Modeling & Prediction - Jerald S. Ault

THE UPDATED ECOPATH MODEL WILL:

- Support the SA Fishery Management Council's move to ecosystem-based management
- Advance and refine the LCC conservation blueprint
- Link to hydrodynamic oceanographic models and satellite data
- Provide more realistic predictions about spatial policy options
- Estimate impacts of episodic events that are limited in space (oil spills, red tides, upwelling)
- Meet the immediate needs of the SSC and the South Atlantic Council

ECOPATH WITH ECOSIM

No fish is an island

ECOPATH WITH ECOSIM

7000+ users in 150+ countries (google analytics) 800+ peer-reviewed publication (ISI Web of Knowledge)

ECOPATH / ECOSIM / ECOSPACE

ECOPATH

Polovina, J.J. 1984. Coral Reefs, 3:1-11; Pauly et al. 2000. ICES J. Mar. Sci., 57: 697-706; Christensen and Walters. 2004. Ecol. Model, 172(2-4):109-139

Diet composition e.g., for a tuna

Use volume or weight!

yPresSouthAtlar ticEcopathMod

HISTORY OF THE SAB MODEL

> 2001 - Strawman 48-group model constructed

> 2004 - Preliminary 98-group model developed

 2014 - Model refined to address forage fish questions (99 groups)

> 2017 – Model refinement to articulate the managed species (137 boxes)

ISSN 1198-6727

Preliminary SAS model

Sponsored by SAFMC 42-box model 98-box model

2001 Volume 9 Number 4

Southeastern United States, Atlantic Shelf, Page 167

A PRELIMINARY ECOPATH MODEL OF THE ATLANTIC CONTINENTAL SHELF ADJACENT TO THE SOUTHEASTERN UNITED STATES

Thomas A. Okey¹ and Roger Pugliese²

¹Fisheries Centre, University of British Columbia, 2204 Main Mall, V6T 1Z4, Vancouver BC Canada email: t.okey@fisheries.ubc.ca

South Atlantic Fishery Management Council, One Southpark Circle, Suite 306, Charleston SC 29407 USA

ABSTRACT

The biological communities of the Atlantic continental shelf adjacent to the southeastern United States are well known, but this knowledge is not integrated into a cohesive description of that region. We constructed a preliminary food web model of this area using Ecopath with Ecosim, as a way to initiate a long-term process of integrating this knowledge, learning more about the structure and resiliency of the system, and helping to guide research priorities in the future. The current model is considered to be a first iteration that can be used as a vehicle to stimulate a more rigorous refinement effort in the near future. The ecologically defined area covered by this model extends from Cape Hatteras, North Carolina to the easternmost extent of the Florida Kevs, and from the intertidal zone (or the entrance of estuarine systems) to the 500 m isobath. The time period characterized by this preliminary model is the four years from 1995 to 1998.

the Gulf Stream advect the underlying nutrient rich slope waters onto the shelf (Mallin *et al.* 2000).. This region as a whole supports a diverse assemblage of marine organisms, as it is somewhat of an ecological interface, or gradient, between warm-water and cold-water species assemblages. We refer the reader to Mallin *et al.* (2000) for a general description of the ecological setting, processes, and related research. A brief overview of special habitats is presented below.

Human activities along the east coast of the southeastern United States have influenced the adjacent continental shelf ecosystem for thousands of years, as native Americans conducted some limited artisanal fisheries and modified fire regimes and the vegetation in upland watersheds (e.g., Cronon, 1983). Modifications to the ecology of the continental shelf ecosystem accelerated soon after the arrival of Europeans, who began fishing coastal waters (e.g., Mowat, 1984; Reeves *et al.*, 1999) in addition to introducing domesticated livestock, weed plants, disease, and new kinds of agriculture (e.g., Crosby, 1986).

Other profound anthropogenic modifications to this continental shelf occurred during the 20th century with the widespread use of powered fishing and whaling vessels, and coastal urbanization and industrialization. One particularly destructive type of fishing is bottom trawling, which destroys biogenic seafloor habitat in addition to simply removing fishes (Watling and Norse, 1998; Turner *et al.*, 1999).

Trawling activity is intense in this shear, and little doubt remains that the bookti Atle Oke considerably modified the continental sheaf. The

Primary contributors

- Behzad Mahmoudi (FMRI)
- Bob Feller (USC)
- David Whitaker (SCDNR)
- Doug Vaughan (NMFS)
- Marty Levissen (SCDNR)
- Jack McGovern (NMFS)
- Larry DeLancey (SCDNR)
- Bill Sharp (FMRI)
- Whit Gibbons (UGA)
- Joan Browder (NMFS)
- John Carlson (NMFS)
- Larry Cahoon (UNC)
- Galen Johnson (UNC)

- Megan Gamble (ASMFC)
- Brad Spear (ASMFC)
- Toni Kearns (ASMFC)
- Peter Verity (SKIO)
- Wilson Laney (USFWS)

Secondary contributors

- Elizabeth Wenner (SCDNR)
- Robert George (GIBS)
- Carolyn Currin (NOAA)
- Chuck Hunter (USFWS)
- Craig Watson (USFWS)
- Damon Gannon (Mote Lab)
- Desmond Kahn (DEDNR)
- Enric Cortez (NMFS)
- George Sedberry (SCDNR)
- Greg McFall (GRNMS)
- Hans Paerl (UNC)
- Jennifer Wheaton (FMRI)
- Jenny Purcell (WWU)
- Jim Nance (NMFS)
- John Merriner (NOAA)
- Doug Forsell (USFWS)

- Jon Hare (NOAA)
- Jose Castro (Mote Lab)
- Ken Lindeman (ED)
- Mark Epstein (USFWS)
- Martin Posey (UNC)
- Paul Carlson (FMRI)
- Steve Ross (UNC)
- Buddy Powell (WT)
- Alan Bolten (UFL)
- Karen Bjorndal (UFL)
- Bob Noffsinger (USFWS)
- Sean McKenna (NCDENR)
- Pat Tester (NOAA)
- Lance Garrison (NMFS)
- Myra Brower (SEFMC)

Attachment 10 Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

NEW 99 BOX SAB MODEL (FORAGE)

5

Forage version 2014

Sponsored by Pew Charitable Trusts

Forage groups articulated

99-box model

Fisheries Centre

The University of British Columbia

Working Paper Series

Working Paper #2014 - 14

Exploring the Trophodynamic Signatures of Forage Species in the U.S. South Atlantic Bight Ecosystem to Maximize System-Wide Values

Thomas A. Okey, Andrés M. Cisneros-Montemayor, Roger Pugliese, Ussif R. Sumaila

Year: 2014

Email: thomas.okey@gmail.com

This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Attachment 10

Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

Articulated forage groups in the 2014 99-box South Atlantic Bight *EwE* model

Anchovies Atlantic menhaden Atlantic silverside Halfbeaks Mullets Sardines Scads Shad Thread herring Pelagic oceanic planktivores Squids Shrimps

Forage Groups in the 99-box South Atlantic Bight model

Group	Species included	B († [.] km [.] ²)	P/B (year [.] 1)	Q/B (year ⁻ 1)
Anchovies	Bay (Anchoa mitchilli), striped (A. hepsetus), silver (Engraulis eurystole)	3.75	1.45	17.50
Atlantic menhaden	Brevoortia tyrannus (not B. patronus)	7.05	1.70	7.84
Atlantic silverside	Menidia menidia	1.18	2.00	14.90
Halfbeaks	Ballyhoo (Hemiramphus brasiliensis), balao (H. balao), common or Atlantic silverstripe (Hyporhamphus unifasciatus)	1.22	2.60	11.70
Mullets	Striped (Mugil cephalus), other (Mugil spp.)	0.11	0.70	11.03
Sardines	Spanish (Sardinella aurita), scaled (Harengula jaguana)	1.93	1.11	11.82
Scads	Round (Decapterus punctatus), rough (Trachurus lathami), bigeye (Selar crumenophthalmus)	2.28	0.92	10.00
Shad	Alosa spp.	3.97	0.50	3.80
Thread herring	Atlantic thread herring (Ophistonema oglinum)	0.28	1.60	13.26
Pelagic oceanic planktivores	Chub mackerel (Scomber japonicus), Ianternfish (Diaphus spp.), antenna codlet (Bregmaceros atlanticus), striated argentine (Argentina striata), flyingfish (Exocoetidae)	3.95	0.87	11.71
Squids	Shortfin (Illex illecebrosus), longfin (Loligo pealei)	0.45	2.67	36.50 Attachme
Shrimps	Rock shrimps and penaeid shrimps	2.53	5.38	vPresSouth

ticEcopathMod

Species / Groups in the 2014 SAB 99-box model

Coastal bottlenose dolphin	Thread herring	Seabass	Estuarine infaunal crustaceans
Manatees	Shad	Wreckfish	Estuarine polychaetes
Large coastal sharks	Anchovies	Other fishes	Bivalves/Oysters
Small coastal sharks	Atlantic silverside	Sea turtles	Offshore infaunal crustaceans
Baleen whales	Halfbeaks	Carnivorous jellies	Offshore polychaetes
Pelagic sharks	Pelagic oceanic invertivores	Birds oceanic piscivores	Small mobile epifauna
Rays and skates	Demersal coastal invertivores	Birds shorebirds	Calico scallops
Dogfish sharks	Demersal coastal omnivores	Birds shelf piscivores	Benthic meiofauna
Adult mackerel	Benthic oceanic piscivores	Birds herbivores	Deep-burrowing infauna
Juvenile mackerel	Benthic oceanic invertivores	Birds wading piscivores	Carnivorous zooplankton
Bluefish	Benthic coastal piscivores	Birds shelf invertivores	Aquatic and other insects
Weakfish	Benthic coastal invertivores	Birds raptors	Other zooplankton
Red drum	Benthic coastal planktivores	Encrusting fauna	Ichthyoplankton
Atlantic menhaden	Reef associated piscivores	Squids	Microbial heterotrophs
Mullets	Reef associated omnivores	Stomatopods	Phytoplankton
Other Drums & Croakers	Triggerfish	Octopods	Microphytobenthos
Striped bass	Shallow water grouper/tilefish	Blue crabs	Benthic macroalgae
Highly migratory pelagics	Goliath grouper	Horseshoe crabs	Pelagic macroalgae
Dolphinfish	Nassau grouper	Golden crabs	Seagrasses
Pelagic oceanic piscivores	Deep-water grouper/tilefish	Stone crabs	Marsh vegetation
Pelagic coastal piscivores	Shallow-water snapper	Spiny lobster	Estuarine benthic detritus
Nearshore piscivores	Mid-shelf snapper	Rock shrimps	Offshore benthic detritus
Pelagic oceanic planktivores	Jacks	Penaeid shrimps	Water-column detritus
Sardines	Red porgy	Megafaunal predators	Dead carcasses
Scads	Grunts and porgys	Echinoderms and gastropods	Tab01_A10_Oke yPresSouthAtlan

Focused on predatory fish of particular value in the 99-box SAB ecosystem model

Spanish/king mackerels

Vermillion snapper

Gag grouper

Dolphinfish

Black seabass

Greater amberjack

Cobia

Red snapper

Effects of Mullets and Squids on other groups

Effect of Menhaden on other groups

Striped bass Large coastal sharks Atlantic menhaden Small coastal sharks Highly migratory pelagics Weakfish Pelagic sharks Birds -- raptors Coastal bottlenose dolphin Reef associated piscivores Pelagic coastal piscivores Juvenile mackerel Dolphinfish Pelagic oceanic piscivores Benthic oceanic piscivores Wreckfish Birds -- shelf piscivores Adult mackerel Nearshore piscivores Dogfish sharks Shallow water grouper/tilefish Red porgy

Biomass change (year 10 / baseline)

Stomatopods Squids Reef associated omnivores Red porgy Calico scallops Seabass Dogfish sharks Small coastal sharks Megafaunal predators Red drum Sardines Other fishes Estuarine infaunal crustaceans Deep-water grouper/tilefish Shad Penaeid shrimps Mid-shelf snapper Thread herring Birds -- wading piscivores Scads Coastal bottlenose dolphin Deep-burrowing infauna Anchovies Pelagic sharks Pelagic oceanic invertivores Atlantic silverside Striped bass Carnivorous zooplankton Weakfish Grunts and porgys Highly migratory pelagics Aquatic and other insects Pelagic oceanic piscivores Wreckfish Shallow water grouper/tilefish Jacks Nearshore piscivores Nassau grouper **Bivalves/Oysters** Sea turtles Pelagic oceanic planktivores Spiny lobster Benthic coastal invertivores Large coastal sharks Benthic coastal piscivores Blue crabs Birds -- shelf piscivores Horseshoe crabs Demersal coastal invertivores Ichthyoplankton Benthic oceanic invertivores Benthic oceanic piscivores Octopods Benthic coastal planktivores

Effect of Squids on other groups

Effect of Pelagic Oceanic Planktivores on other groups

Pelagic oceanic planktivores Jacks Pelagic sharks Marsh vegetation Shallow-water snapper Birds -- oceanic piscivores Bluefish Wreckfish Highly migratory pelagics Shallow water grouper/tilefish Adult mackerel Pelagic coastal piscivores Juvenile mackerel Pelagic oceanic piscivores Weakfish Seagrasses Grunts and porgys Nearshore piscivores Other fishes Striped bass Dolphinfish Pelagic oceanic invertivores Other Drums & Croakers Carnivorous zooplankton Halfbeaks Dogfish sharks Mid-shelf snapper Birds -- wading piscivores Birds -- shelf piscivores Reef associated piscivores Seabass Shad Sardines Thread herring Red porgy Scads

Effect of anchovy on other groups

/PresSouthAtlan ticEcopathMod

Effect of halfbeaks on other groups

yPresSouthAtlar ticEcopathMoc

Effect of shrimps on other groups

Effect of all forage fish groups on other groups

Bluefish Juvenile mackerel Weakfish Adult mackerel Large coastal sharks Striped bass Highly migratory pelagics Atlantic menhaden Mullets Pelagic oceanic planktivores Sardines Scads Thread herring Shad Anchovies Atlantic silverside Halfbeaks Pelagic sharks Dolphinfish Small coastal sharks Jacks Reef associated piscivores Pelagic coastal piscivores Birds -- shelf piscivores Birds -- wading piscivores Birds -- oceanic piscivores Red porgy Coastal bottlenose dolphin Spiny lobster Shallow water grouper/tilefish Horseshoe crabs Stone crabs Wreckfish Birds -- raptors Benthic meiofauna **Bivalves/Oysters** Other Drums & Croakers Benthic oceanic piscivores Goliath grouper Demersal coastal omnivores Rays and skates Rock shrimps Triggerfish Golden crabs Birds -- shelf invertivores Offshore polychaetes Reef associated omnivores Stomatopods Nearshore piscivores Baleen whales Benthic coastal invertivores Seabass Red drum Shallow-water snapper Nassau grouper Deep-water grouper/tilefish Benthic coastal piscivores Pelagic oceanic piscivores Penaeid shrimps Birds -- herbivores Other zooplankton Carnivorous jellies Seagrasses Squids Carnivorous zooplankton Ichthyoplankton Birds -- shorebirds Benthic coastal planktivores Mid-shelf snapper Other fishes Aquatic and other insects Pelagic oceanic invertivores Dogfish sharks Marsh vegetation

Effect of all forage groups (including squids and shrimps) on other groups

Effects of menhaden on valued predatory fish

Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

Effects of all forage fish on valued predatory fish

Effects of all forage on valued predatory fish

Articulated Managed Species / Groups in the 2017 SAB 137-box model

Adult king mackerel	Red grouper	Vermilion snapper
Juvenile king mackerel	Black grouper	Silk snapper
Spanish Mackerel	Scamp grouper	Red snapper
Juvenile spanish mackerel	Other shallow grouper/tilefish	Other mid-shelf snapper
Spotted seatrout	Snowy grouper	Greater amberjack
Snook	Yellowedge grouper	Almaco jack
Tarpon	Other deep grouper	Bar Jack
Cobia	Blueline tilefish	Banded rudderfish
Bonefish	Golden tilefish	Blue runner
Permit	Yellowtail snapper	Other jacks
Atlantic Spadefish	Mutton snapper	Other porgys
Hogfish	Gray snapper	White grunt
Ocean triggerfish	Lane snapper	Other grunts
Gray triggerfish	Cubera snapper	Black Seabass
Gag grouper	Other shallow snapper	Attachment 10 Bank/Rock seatoass10_Oke

ticEcopathMod

Species / Groups in SAB 137-box model

Coastal bottlenose dolphin	Nearshore piscivores	Gag grouper	Red porgy	Penaeid shrimps
Manatees	Pelagic oceanic planktivores	Red grouper	Other porgys	Megafaunal predators
Large coastal sharks	Sardines	Black grouper	White grunt	Echinoderms and gastropods
Small coastal sharks	Scads	Scamp grouper	Other grunts	Estuarine infaunal crustaceans
Baleen whales	Thread herring	Goliath grouper	Black seabass	Estuarine polychaetes
Pelagic sharks	Shad	Nassau grouper	Rock/Bank seabass	Bivalves/Oysters
Rays and skates	Anchovies	Other shallow grouper/tilefish	Wreckfish	Offshore infaunal crustaceans
Dogfish sharks	Atlantic silverside	Snowy grouper	Other fishes	Offshore polychaetes
Adult king mackerel	Halfbeaks	Yellowedge grouper	Sea turtles	Small mobile epifauna
Juvenile king mackerel	Pelagic oceanic invertivores	Other deep grouper	Carnivorous jellies	Calico scallops
Spanish mackerel	Permit	Blueline tilefish	Birds oceanic piscivores	Benthic meiofauna
Juv Spanish mackerel	Demersal coastal invertivores	Golden tilefish	Birds shorebirds	Deep-burrowing infauna
Bluefish	Demersal coastal omnivores	Yellowtail snapper	Birds shelf piscivores	Carnivorous zooplankton
Weakfish	Atlantic spadefish	Mutton snapper	Birds herbivores	Other zooplankton
Red drum	Benthic oceanic piscivores	Gray snapper	Birds wading piscivores	Ichthyoplankton
Atlantic menhaden	Benthic oceanic invertivores	Lane snapper	Birds shelf invertivores	Microbial heterotrophs
Spotted seatrout	Red Lionfish	Cubera snapper	Birds raptors	Phytoplankton
Mullets	Summer flounder	Other shallow snapper	Encrusting fauna	Microphytobenthos
Other Drums & Croakers	Southern flounder	Vermilion snapper	Squids	Benthic macroalgae
Striped bass	Gulf flounder	Silk snapper	Stomatopods	Pelagic macroalgae
Highly migratory pelagics	Benthic coastal piscivores	Red snapper	Octopods	Seagrasses
Dolphinfish	Benthic coastal invertivores	Other mid-shelf snapper	Blue crabs	Marsh vegetation
Pelagic oceanic piscivores	Hogfish	Greater amberjack	Horseshoe crabs	Estuarine benthic detritus
Snook	Benthic coastal planktivores	Almaco jack	Golden crabs	Offshore benthic detritus
Tarpon	Reef associated piscivores	Bar jack	Stone crabs	Water-column detritus
Pelagic coastal piscivores	Reef associated omnivores	Banded rudderfish	Spiny lobster	Dead carcasses
Cobia	Ocean triggerfish	Blue runner	Rock shrimps	
Bonefish	Gray triggerfish	Other jacks		Attachment 10

Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

Choosing the newly articulated groups

	A	В	C	D	E	F	G	Н	1	J	
1			Status De	etermination	Stock	Status	Fishing Leve	Recomme			
2	s	tock	Cr	iteria	SLOCK	Stock Status		lbs ww unless otherwise noted			
3			Overfishing	Overfished	Overfishing?	Overfished?	OFL	ABC	Year		
4			MFMT	MSST							
5	Alm	aco Jack	F _{30%SPR}	(1-M)*SSB _{30%SPR}	UNK	UNK	UNK	302,517	2013	302,517	
6			UNK	UNK	2.288.92****	0-2-200712345			0000000000	0	
7	Atlanti	c Spadefish	F _{30%SPR}	(1-M)*SSB _{30%SPR}	UNK	UNK	UNK	189,460	2013	189,460	
8			UNK	UNK	03-465.03		Devision set		12/2/2016-0	0	
9	Banded	Rudderfish	F _{30%SPR}	(1-M)*SSB _{30%SPR}	UNK	UNK	UNK	145,434	2013	145,434	
10			UNK	UNK					-	0	
11	Ba	r Jack	F _{30%SPR}	(1-M)*SSB _{30%SPR}	UNK	UNK	UNK	24,780	2013	24,780	
12			UNK	UNK				88		0	
13	Black	Grouper	F _{30%SPR}	(1-M)*SSB _{MSY}	No	No	627,552 GM/SA	256,430	2013	256,430	
14			0.216	5.92 mp			294,949 SA			0	
15	Black	Sea Bass	F _{MSY}	(1-M)*SSB _{MSY}	No	No	2 296 000	2 133 000	2013	2,133,000	
16	Diden		0.610	256E10 eggs		110	2,250,000	2,155,000	2015	0	
17	Black	Snannar	F _{30%SPR}	(1-M)*SSB30%SPR	LINK	LINK	LINK	382	2013	382	
18	Diack	эпарреі	UNK	UNK	UNK	UNK	ONK	302	2015	0	
19	Blackfi	n Snanner	F _{30%SPR}	(1-M)*SSB30%SPR	LINIZ	LINK	LINK	3 665	2012	3,665	
20	ыаскт	n Snapper	UNK	UNK	UNK	UNK	UNK	3,005	2015	0	
21	pl	Dunna	F _{30%SPR}	(1-M)*SSB30%SPR				1 125 720	2012	1,125,729	
22	Diue	Kunner	UNK	UNK	UNK	UNK UNK		1,125,725	2015	0	
23	pl		F _{MSY}	(1-M)*SSB _{MSY}	Vee	Maria		624.244	2012	631,341	
24	Bluell	ne i lietish	0.302	221.9 mt	res	res	UNK	631,341	2013	0	
25			F _{30%SPR}	(1-M)*SSB30%SPR	LINIZ			2 740	2012	2,718	
26	C C	oney	UNK	UNK	UNK	UNK	UNK	2,/18	2013	0	
27		127	F3096SPR	(1-M)*SSB30965PR						24,680	
28	Cuber	a Snapper	UNK	UNK	UNK	UNK	UNK	24,680	2013	0	
29	-		FROMER	(1-M)*SSB30%SPR						3,285	
30	Dog Snapper		UNK	UNK	UNK	UNK	UNK	3,285	2013	0	
31	1		Fanesepp	(1-M)*SSBMev	2	0				805,000 gw	
32	Gag	0.21	6.82 mp	Yes	No	1,095,000 gw	805,000 gw	2013	0		
1	Attac										

Temporal-dynamic module of EwE, initialized from Ecopath Includes biomass and size structure dynamics Requires only a few extra parameters

Used, among others, to assess Quantify combined effect of species dynamics, fishing impacts, and environmental impacts on a food web over time Replicate past scenarios (time series fitting) Explore future scenarios Explore fishing policy alternatives Test model robustness

Walters et al 1997 RFBF, Ahrens et al 2012 Fish and Fisheries

Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

CALIBRATING THE MODEL

TIME PREDICTIONS FROM THE STRAIT OF GEORGIA MODEL, 1950-2000

Spatial temporal component of EwE, executes Ecosim for every 'water' cell in a grid

Requires extra inputs, related to movement, habitat, fishing, environment

Groups and fleets try to move to nearby optimal conditions

File Vie				SCatSea	model 1978 -	Ecopath with	Ecosim	6.5.10838	.0 –	
	w <u>E</u> copath opath v 🍛 E	Eco <u>s</u> im Ecos <u>p</u> a cosim v 🎲 Ecosp	ce <u>T</u> ools <u>W</u> ace v @Ecotr	indows <u>H</u> elp acer v 🛃					G:\Projects\2014\CatSeaJob\Model\SCatSea78-10_Ecosp	ace.ewemdb
Navigator			Danie i	nnut Mane				_		• X
			Ecospace	fishery				×	📑 📑 Edit map details	
					<u>S</u> et	: 1	Apply	📑 💕	🖃 🕲 MPAs (1)	1
Fleet \ habitat use:	All 0-	50 50-150 sand	50-150 mud	50-150 rock	150-400 sand	150-400 mud	>400	MPA1	/ @ MPA1	
wling fishery									🗄 💭 Fishing (2)	
se seine fishery aline fishery									🖃 🧔 Reference (1)	1
ll bait fishery		i 🗹							🔒 💭 Reference	
									🛨 💭 Data layers (3	3)
									🛨 💭 Regions (1)	1
									🛨 💿 Basemap (2)	
									🖃 🥥 Habitat capaci	ity (2)
								>	🗄 💭 Environmdriv	vers (1) 🥖
Þ	📕 Habitat base	ed foraging							🛨 🐨 Importance (0)) 🦉
	Dispersal								🛨 🎯 Habitats (7)	Ø
₽ № 100	s			-3	4		2	ſ		
						•				
									Selected layer	
			ł			1			✓ Selected layer — Name: MPA1	
			ł	3		2			✓ Selected layer Name: MPA1 Max value: 1	
			1	3					✓ Selected layer Name: MPA1 Max value: 1 Min value: 0 Qursor: ▲★★★	chmont
Status	Remarks		ł	3					✓ Selected layer Name: MPA1 Max value: 1 Min value: 0 Qursor: ATTON	chment
Status 1: MPA1 (N	Remarks ame) row 1, cc	ıl 16; Ion 0.450000, Ia	t 41.5000					SCatSea r	✓ Selected layer Name: MPA1 Max value: 1 Min value: 0 Qursor: A††GO TOPO nodel 1978 ScotSea Ecospace Jarge	chment 1_A10_C SösunrAti

ticEcopathMod

Used, among others, to assess

- Distribution of marine species and fishing effort
- Spatial impact of fishing
- Management options, e.g. impact of MPAs
- Impact of environmental change (EwE version 6.3+)

Running model has been linked to Marxan & Atlantis Includes an IBM approach

SPATIAL DISTRIBUTION OF SPECIES

SETTING UP THE HABITAT FORAGING CAPACITY MODEL

1. SELECT GROUP CAPACITY MODEL

Anchovy Bay - Ecopath with Ecosim 6.5.14149.0 − □ >							
<u>F</u> ile <u>V</u> iew <u>E</u> copath Eco <u>s</u> im	Ecos <u>p</u> ace <u>T</u> ools	<u>W</u> indows	<u>H</u> elp				
🛃 🔤 Ecopath 💌 🎡 Ecosim 💌	🎲 Ecospace 📼 🌚 E	cotracer 💌 层	D:\Sources\Ecop	ath6\Databas	e\Anchovy Bay S	patial.ew	emdb
Navigator 🕴 😂 Basic input 😵 Group capacity model 🗸 🗸							
➢ Ecopath ▷ Input	🍰 Habitats 🏾 🎜 Env	ironmental resp	oonses 🦸 Both	<u>S</u> et:		Apply	
> 🖏 Output	Group name	Use habitat	Use environmental responses	Both			
Ecosim	1 Whales						
Ecospace	2 Seals						
Er Input	3 Cod	<u> </u>	M				
Maps	4 Whiting						
Habitat based foraging	5 Mackerel						
🗔 Apply foraging responses	7 Shrimo						
🗔 Group capacity model	8 Benthos						
🔄 Habitat foraging usage	9 Zooplankton						
Functional responses grid	10 Phytoplankton						
Dispersal	11 Detritus						
Advection							
Marine Protected Areas							
External data							
> S Output							
> 🔆 Tools							
R Tools							
< >							
🚱 Status 🛃 Remarks					-	Attachn	nent
1: Temperature (Name)			🍚 Anchovy Bay 🍪	New Ecosim s	scenario 🌚 Bay	ADUL A	D_Ok

ticEcopathMod

2. DEFINE ENVIRONMENTAL DRIVERS

File View Ecopath Ecosim Ecospace Ecospace Ecospace Ecospace Ecospace Ecospace Ecospace Ecospace Image: Cooperative in the environmental input maps V Contract Define environmental input maps Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input maps V Cooperative input input maps Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input maps V Cooperative input input maps Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input maps V Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input maps V Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input input maps Image: Cooperative input maps Image: Cooperative input maps Image: Cooperative input input input maps Image: Cooperative input input maps Image: Cooperative input in	ر 🍚	Anchovy E	Bay - E	copath v	vith Eco	osim 6.5.14149	.0							_		×
Image: Coopert Image	File	View	Ecop	ath E	cosim	Ecospace	Tools	Windov	vs H	elp						
Navigator Define environmental input maps Imput Imput		Ecopa	th 👻	Ecosi	m 🔻	🚱 Ecospace	👻 💮 E	cotracer	- 🗔		D:\Sour	ces\Ecopath6	\Database\Anc	hovy Ba	y Spat	ial.ewemdb
Ecopath Ecopath More 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 <tr< td=""><td>Navi</td><td>gator</td><td>D</td><td>efine en</td><td>vironm</td><td>ental input ma</td><td>ips</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td>• X</td></tr<>	Navi	gator	D	efine en	vironm	ental input ma	ips							×		• X
V @ Input Name Drive capacity Description Status Edit Perfy Wag More Det 1 Depth V Depth map (bathymetry) Add Phic Other 2 Temperature V 3 Distance from coast V Remove 400 350 2 Temperature V Status Remove Move up 400 350 400 350 400	× (Ecopath					· [unnly 📑
Add phic Other 2 Temperature V 3 Distance from coast V 3 Distance from coast V 4 Add phic Other 6 Fish Status Mar 6 Ecosimi Mar Mar 6 Eco Mar Status OK Cancel 7 Tools X Tools X Adv	`	🗸 🖙 Inpu	t Mac			Name	Drive	capacity		Description	St	atus	Edit			
2 Temperature Image: Construct of the construction of the const			Bas	1		Depth			Depth	map (bathymetry	y)		Add	p	hic	Other
□ Det □ Oth □ Oth > de Fish > © Foo 3 Distance from coast ₩ > @ Foo 350 0 > © Output Order 0 > © Ecosim Move up 00 > © Ecosim Move down 300 > @ Eco Mat 300 > @ Adv Good Mat > @ Output OK Cancel > @ Output OK Cancel > @ Output OK Cancel			Diet	2	Te	emperature		⊴						'n	су	mortality
Image: Second secon		-	Deti	3	Distar	nce from coast		⊻					Kemove	10	00	
> > > <td></td> <td></td> <td>Oth Fish</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Кеер</td> <td>38</td> <td>50</td> <td></td>			Oth Fish										Кеер	38	50	
Solution		-> 🙊	Too													
Kove up Move up Move down Mat Mot Mat)	👌 📥 Outp	out										Order	_		
✓ ↔ Input ④ Eco ④ Mar ○ ☐ Concel ○ ☐ Concel <tr< td=""><td>2</td><td>Ecosim</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Move up</td><td></td><td>-</td><td></td></tr<>	2	Ecosim											Move up		-	
Image: Status Ima	 	🖌 🖙 Inpu	t t										Move down			
Mar Hat Dist Adv Eco Mar Ecc Ecc Mar Ecc Mar Ecc Ecc Mar Ecc Ecc Mar Ecc Ecc Mar Ecc Ecc Mar Ecc Ecc Mar Ecc Ecc Mar Ecc Ecc Ecc Ecc Ecc Ecc Ecc Ec			Eco											50	00	
Adv Disc Adv Eco Mar Ette OK Cancel OK Cancel Adv Status Kemarks Adv Adv Cancel		. 🔤	Мар											-		
Adv Adv Ecc Mar Ette OK Cancel C		2	Hat Disr													
Eco Mar Ete OK Cancel OK Cancel OK Cancel Color Attachment 10 Table1_A10_Okee			Adv													
Mar Exte State Cancel Mar OK Cancel Canc		-	Eco											_		
OK Cancel Tools Status Remarks			Mar (_		
Tools Tools Status Remarks Attachment 10 Tab01_A10_Oke	3	l_ad Duta	out									ОК	Cancel			
X Tools Attachment 10 Tab01_A10_Oke	3	> 🔆 Тоо	s													
Status Attachment 10 Tabol_Alo_Oke	> 🔆 Tools															
Status Remarks Affachment 10 Tab01_A10_Oke	<				>	<										>
	9 9	Status 🛃	Rema	arks											Aft	achment 10
1: Temperature (Name) 🐨 BayOrAnchovies	1: Ter	mperature	(Nam	e)						a 🤤	nchovy	/ Bay 🍪 New	Ecosim scenari	o 🌚 Ba	XPFE	nchovies SouthAtlan

3. POPULATE ENV. DRIVER MAPS

4. DEFINE ENV. RESPONSE CURVES

😂 Anchovy Bay - Ecopath with	Ecosim 6.5.14149.0 — 🗆 🗡	<
<u>F</u> ile <u>V</u> iew <u>E</u> copath Eco <u>s</u> i	im Ecos <u>p</u> ace <u>T</u> ools <u>W</u> indows <u>H</u> elp	
🔙 😂 Ecopath 🔻 🍪 Ecosim	🝷 🎲 Ecospace 🝷 🌑 Ecotracer 🝷 🛃 D:\Sources\Ecopath6\Database\Anchovy Bay Spatial.ewer	ndb
Navigator 🛛 🖓	Basic input 😵 Habitat based foraging	×
copath cosim	Save to image Max. value: 0.904121 Values Change shape <u>R</u> eset <u>O</u> ptions	_
cospace	2: Depth whiting	
 Input Ecospace parameters Maps Habitat based foraging Apply foraging responses Group capacity model Habitat foraging usage Functional responses grid Dispersal Advection 	Input value	
Marine Protected Areas	Import Add Aa Define for aging response	
Dutput Tools pols	Inport Addition 1: Depth shrimp-benthos 2: Depth whiting	
< >	0.0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0
🚱 Status 🛃 Remarks	Attachme	ent 1
1: Temperature (Name)	Tob01_A10 🚭 Anchovy Bay 🍪 New Ecosim scenario 🌚 Bay 🖗 Anchovy Bay	Ok Atla
	ticEconati	

Foraging habitat capacity model case study

Full Mediterranean EwE model

90+ functional groups, assigned to 4 MSFD zones

Time frame 1950 – 2010 Entire basin at 0.167 dd grid

1. Define environmental drivers

Primary production

Salinity (surface and bottom)

Temperature (surface and bottom)

Depth MSFD area restrictions

2. Define environmental responses

Here we are using a plug-in to import environmental responses from AquaMaps species envelopes

4. Ecospace computes capacity (cetaceans - depth)

General Med model - Ecopath with Ecosim 6.5.10321.0	
<u>File View Ecopath Ecosim Ecospace Tools Windows H</u> elp	
🛃 🤤 Ecopath 🔻 🍪 Ecospace 🔻 🌑 Ecotracer 👻 🛃 D:\Projects\2014	\JRC - chiara\Data\Med 1950s.EwEmdb
Basic input Maps Foraging response Apply environmental response	→ ×
📓 🖓 Save image Position + 🍳 🔍 100% - 🔍 Reset	🔛 Edit m <u>a</u> p details
nig at the second se	🖃 🎯 MPAs (0) 🥒 🔺
	🕂 💭 Fishing (2)
	🗄 💭 Reference (1) 🥒
	🖃 💿 Data layers (3)
	Migrationceans W)
	PP (relative)
	Contaminants (rel)
	🗄 💭 Regions (1) 🥒
	🖃 🕸 Basemap (2)
	🐨 Depth
	Excluded cells
	🖃 🕲 Habitat capacity (2)
	🐵 Cap. (1: Pceans W) 📃
	🔒 🐵 Cap. cometaceans) 📃
	🖃 🕏 Environm_drivers (9) 🥖
	🐵 MSFD W
	🔒 Selected layer
~	Name: Cap. computed (2: Others
	Max value: 1 Attacher
	Min value: 0.01701954 Tab01

4. More capacity (Western sardine - depth, MSFD W)

4. Run

9	Med model - Ecopath with Ecosim 6.5.10	0321.0					x		
<u>F</u> il	<u>File View E</u> copath Eco <u>s</u> im Ecospace <u>T</u> ools <u>W</u> indows <u>H</u> elp								
-	Basic input Foraging response	Apply environmental	response Run Ecospa	ice			• X		
Navi	Distribution of	Map Plot							
gato	<u> <u> </u> </u>	Piscivores feeding	Others feeding	Pinnipeds W	Seabirds W	Sea turtles	High		
P	Eishing effort	Large Pelagics	Medium pelagics W	European pilchard	European anchovy	Other small	í 📕 🛛		
	© Catch	Large demersals W	European hake W	W Medium demersals	W Small demersals W	Deep fish W			
	Catch/biomass 2 Legend max.	Sharke W	Dave and skatos W	W Conhalonada W	Crustanoans W/	Lolly firsh W			
		Slidiks W	Rays and skales W	Cepilalopods V	Ciusiaceansiv	Jenularive			
		Benthos W	Zoopiankton W	Phytoplankton W	Seagrass W	Piscivores feeding cetaceans A			
	Show all	Pinnipeds A	Seabirds A	Medium Pelagics A	European pilchard	European anchovy			
	Selected groups/fleets: Choose	Other small	Large demorsals A	European hake A	Medium demersals	Small demensals A	í 🔤 🛛		
	Show single group/fleet:	pelagics A	Sharks A	Rays and skates A	A Cephalopode A	Crustaceans A			
	1: Piscivores feeding cetaceans V 💌	Iollyfich A	Bonthan A	Zoonlankton A	Dhytonian ten A	Sources A	2		
		JenyiisarA	Deranos A	Zoopiderktor	- Hytopiankron -	Sedgrass 7			
	Show MPAs	Piscivores feeding cetaceans I	Pinnipeds	Seabirds I	Medium Pelagics I	European pilchard I			
	✓ Show IMB packets	European anchovy	Other small	Large demorsals I	European hake I	Medium demersals			
	🗄 Labels ————	Small demensals I	Deep fish L	Sharks	Rays and skates I	Cephalopods I	í 🔤 🛛		
	Run	Crustaceans I	Jellyfish	Benthos	Zooplankton	Phytoplankton I			
	Run Multi-stanza 💌	Soarrang	Disciplation fooding	Dinningde E	Soshirds E	Modium Polagios E			
	Resume Stop	Sedgrass	cetaceans E	Filmpeus C.	Seablids E	Medidini Felagics L			
		European pilchard	European anchovy	Other small pelagics E	Large demorsals E	European hake E	ttachr		
	Graph options	Medium demersals	Small demorsals E	Deep fish E	Skarks E	Rays and skates E			
		Cephalopods.E							

OUR WORKING GROUP

- Roger Pugliese South Atlantic Fishery Management Council
- > Dr. Rua Mordecai, SALCC, Dr. Simeon Yurek, USGS
- Dr. Marcel J. Reichert Marine Resources Research Institute, South Carolina Department of Natural Resources (Tracey Smart, Wally Bubley)
- > **Dr. Howard Townsend –** NOAA/NMFS/ST/Ecosystems
- Dr. Luiz Barbieri Florida Fish and Wildlife Conservation Commission, FWRI
- Dr. Ruoying He Department of Marine, Earth and Atmospheric Sciences, North Carolina State University
- Dr. Peter Sheng Professor and Director, Coastal and Oceanographic Engineering Program, University of Florida
- > Dr. Thomas Okey Ocean Integrity Research, Victoria, BC, Canada
- Dr. Jerald S. Ault Rosenstiel School of Marine and Atmospheric Science, University of Miami
- > Dr. Jeroen Steenbeek Ecopath Research and Development Consortium
- > Dr. Patrick N. Halpin Director, Geospatial Analysis Program Duke University

Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

3. EXCHANGING DATA WITH THE OUTSIDE WORLD

GIS DATA FOR MANY ECOSPACE LAYERS Connected to existing Ecospace driver layers

Primary production

Environmental drivers

Habitats

Fishing cost

MPA layouts

Contaminants

Migration

Computed foraging capacity

Coming soon

Advection

SPATIAL TEMPORAL DATA FRAMEWORK

Attachment 10 Tab01_A10_Oke yPresSouthAtlan ticEcopathMod

Steenbeek et al. 2013. Ecological Modelling 263, 139-151.

SPATIAL TEMPORAL DATA FRAMEWORK

SPATIAL TEMPORAL DATA FRAMEWORK CASE STUDY

ADVECTION

Current Advection model in EwE, which computes advection flow fields from wind, mixed layer depth, and upwelling, does not work

Work-around (EwE version 6.5+) Applying advection flow fields does work: flow layer content can be entered or driven by spatial temporal framework

Ongoing developments

New Advection model only requires depth and / wind input to calculate advection and upwelling

1. CALCULATE ADVECTION

Anchovy Bay - Ecopath with Ecosim 6.5.14149.0								
<u>F</u> ile <u>V</u> iew <u>E</u> copath Eco <u>s</u> im Ecos <u>p</u> ace <u>T</u> ools <u>W</u> indows <u>H</u> elp								
🛃 🤤 Ecopath 👻 Ecosim 🔻 🌚 Ecospace 💌 🌑 Ecotracer 💌 🛃 🛛 D:\Se	🛃 😂 Ecopath 👻 Ecosim 🔻 🌚 Ecospace 👻 🌑 Ecotracer 👻 🛃 D:\Sources\Ecopath6\Database\Anchovy Bay Spatial.ewemdb							
Navigator 4 Diet composition Statution	- ×							
Ecopath Save image Position + 🔍 🤍 100% - 🔍 I	Reset							
Generation Ecospace Wind map	🖉 Wind map							
Ecospace parame	Name: Wind map							
Maps	Max value: 29.34146							
Apply foraging	Min value: 10.55253							
A Group capaci	<u>C</u> ursor:							
Functional res	Value: 40.000							
Advection	Smooth 💋							
Ecospace fishery Marine Protected	Month: January ~ 🗈							
External data Advection map Upwelling	Model parameters							
> X Tools	Upwelling 30.00							
Tools	PP upwelling 0.01000							
	Compute advection velocities							
	<u>C</u> ompute <u>Stop</u>							
Status 🛃 Remarks								
🚍 Anch	ovy Bay 🥝 New Ecosim scenario 🚳 BayOfAn&htorietame							

Tab01_A10_Oke yPresSouthAtlan ticEcopathMod