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Abstract 

Standardized chevron trap sampling has been used since 1990 to monitor reef fish 

along the southeast Atlantic coast. Since 2011, video cameras have been paired with chevron 

traps creating two semi-independent fisheries indices.  Here we develop a State-Space Model 

for vermilion snapper to combine both chevron trap catches and video counts into a single 

integrated index for stock assessment. The index spans the time frame of 1990-2016 and 

accounts for variation in sampling efficiency of both sampling gears as well as covariates 

describing the spatial distribution of fish. The index is meant to describe population trends of 

vermilion snapper in the region. Index values for 2015-2016 include a calibration factor to 

account for a change in camera type. 

 

Background 

Many economically important reef fish species along the southeast US Atlantic coast 

have been monitored using fishery-independent chevron fish traps since 1990. Since 2011, 

cameras have been attached to chevron traps to provide an additional index of reef fish 

abundance. Early research comparing trap catches to video counts showed substantial 

variation between the two (Bacheler et al. 2013), likely due to differences in how 

environmental conditions influenced the ability of traps and videos to detect various species 

of fish (Bacheler et al. 2014, Coggins et al. 2014). For instance, vermilion snapper and gray 

triggerfish were more likely caught in traps when water temperature was warm, and observed 

on video when water was clear (Bacheler et al. 2014). At a 2015 stock assessment workshop 

for red snapper and gray triggerfish (SEDAR 41), chevron trap and video data were used to 

compute separate indices of abundance that were subsequently combined following the 

method of Conn (2010). Workshop attendees noted that the gears lacked independence since 

cameras were attached to traps, but attendees were also unwilling to discard one of the 

indices because no other fishery-independent indices were available and because both gear 

types were considered informative. The method we propose here combines trap and video 

data into a single time series while accounting for the lack of independence between the two 

gears.  

One methodological approach to combine trap and video data is through the use of 

hierarchical model structures that can separate aspects of the ecological process of interest 

from aspects of the observation process (Gelman et al. 2007, Royle and Dorazio 2008). There 

are few effective ways to achieve this separation with count-based data, but two examples 

include N-mixture models (Royle 2004) and State-Space Models (SSM, Schnute 1994). The 

application of N-mixture models to fish is fairly new in the fisheries literature and quite rare 



 

 

(but see Webster et al. 2008, Flowers and Hightower 2013, Chambert et al. 2016, Scheerer et 

al. 2017). The paucity of examples of N-mixture models applied to fish is likely a result of 

the stringent assumptions required by these models. Because N-mixture models rely on the 

variance of replicate count data to separate the abundance from the detection process, strict 

population closure and a binomial sampling process are required for useful model 

performance (Barker et al. 2017). Indeed, preliminary analysis of vermilion snapper data 

indicated random extra-binomial variation in the replicate camera counts and dependence of 

the camera counts on the chevron trap due to its depleting effects on the local abundance 

during the first ~100 min of sampling.  

Alternatively, State-Space Models have a long history in fisheries (e.g. Schnute 1994, 

Maunder et al. 2013, Shertzer et al. 2016) and have been applied to integrate multiple data 

types into a single index (e.g. Conn 2010, Staton et al. 2017). Because SSMs do not rely on 

the assumption of binomial sampling to estimate “true” abundance and detection probability, 

they require fewer assumptions. SSMs are typically applied to time series data and assume 

that catch (trap catch or camera counts) is a random variable drawn from a specified 

distribution with a mean that is equal to the true relative abundance each year. For the 

parameters of this model to be estimable, the assumption is also made that the true relative 

abundance is non-independent among years, which is a biologically valid assumption for 

most biota with multi-year lifespans.  

Here we develop a novel fishery-independent index of abundance for vermilion 

snapper in the US South Atlantic through the development and application of a State-Space 

Model using trap and video data collected by the Marine Resources Monitoring, Assessment, 

and Prediction (MARMAP) program (1990-2016) and the Southeast Fishery-Independent 

Survey (2010-2016). Collectively, these two fishery-independent sampling programs are 

referred to as the Southeast Reef Fish Survey (SERFS).  The SSM has three key features that 

make it particularly useful for this application: (i) The model incorporates the chevron trap 

catches and camera counts into a single index and has the potential to incorporate additional 

information as available. (ii) The model corrects for shifts in the sampling frame by modeling 

temporal variation at the meta-population level separate from spatial variation at the sub-

population level. (iii) The model corrects for changes in sampling efficiency due to temporal 

and spatial variation in the environment through the use of covariates of detection and 

random effects.  

 

Data and Treatment 

There were 15,629 chevron trap samples available covering a period of 27 years 

(1990-2016). For the time period of 2011-2016, the chevron traps were fitted with a video 

camera resulting in 7,644 41-frame video samples available. For analysis, we used un-

transformed catch of the chevron trap and the sum of the counts across the 41 camera frames 

(SumCount). We chose to use the SumCount of the camera data because (i) preliminary 

analysis indicated that modeling each of 41 camera frames for each video sample 

substantially increase computation time, (ii) SumCount changes linearly with the mean count 

(Bacheler and Carmichael 2014), which is often the preferred camera metric (Conn 2011, 

Schobernd et al. 2014), and (iii) using the SumCount preserves the discrete nature of the 



 

 

camera counts allowing for the use of derivations of the Poisson distribution to describe both 

the chevron trap and camera observation processes. 

We applied several data filters to either simplify predictor variables, remove records 

with missing predictor variables, or to remove unusual values. We removed any data points in 

which the survey video was considered unreadable by an analyst (e.g., too dark, corrupt video 

file), or if the trapping event was flagged for any irregularity that could have affected catch 

rates (e.g., trap dragged or bounced).  Additionally, any survey video for which fewer than 41 

video frames were read (n =150) was removed from the full data set.  Standardizing the 

number or readable frames for any data point was essential due to our use of SumCount as a 

response variable. We also identified any chevron trap or video sample in which 

corresponding predictor variables were missing and removed them from the final data set. 

After the filtering process, the final data set contained 13,903 chevron trap samples, of which 

6,767 had corresponding video camera samples (Table 1). 

 

The Model 

  We fit the chevron trap catch and video SumCount data to a State-Space Model (SSM) 

that described patterns in vermilion snapper relative abundance through space and time. Our 

SSM was formulated in a hierarchical framework with a sub-model that described patterns in 

“true” relative abundance and two secondary sub-models that described the observation of the 

“true” relative abundance with chevron traps and video cameras. By modeling the abundance 

process and observation process with separate sub-models we were able to separate 

observation error from process error and account for some aspects of systematic variation in 

sampling efficiency (i.e. detection probability).  

Our model describes changes in the standardized relative abundance (hereafter 

referred to simply as abundance, Nt) from year to year with an exponential growth model as:  

 

log���� = log���	
� + �� (1) 

 

where �� represents the log-scale change in abundance between time t-1 and time t. 

Abundance was treated as an unobserved (latent) variable, and represents the time series of 

primary interest (i.e., the standardized index). The parameter �� was modeled as a random 

variable on the log scale drawn from a normal distribution as: 

 

��~Normal��̅, �� (2) 

 

where �̅ is the expected population change between time t-1 and t, and � is the standard 

deviation, representing the magnitude of process error.  

 Spatial variation in abundance across sample sites each year was modeled as: 

 

��,� = log���� + ����,�
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where the term log���� is the year specific intercept of the linear model, ����,�
�  is a linear 

combination of spatial covariates, and ����� describes random spatial variation in abundance 

that is unexplained by the covariate structure. 

 We approximated the chevron trap catches (��,�
��� 

) and the camera SumCounts (��,�
!�") 

as deviates drawn from Poisson log-Normal distributions, which are similar in character to 

negative binomial distributions (Nitzoufras 2009, p. 315-317), but can demonstrate better 

mixing properties than negative binomial distributions when applied in Bayesian programs 

such as JAGS.  We specified these models as: 

 

��,�
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*/01+2*/013 
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��,�
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where the mean on the log scale is the site-specific abundance ��,� plus a linear combination 

of environmental and sampling covariates (i.e. ����,7
��� 

 and ����,7
!�") to account for 

systematic variation in sampling efficiency. The parameters ����  and �!�" are gear-specific 

log Normal distributed random observation errors modeled as, ��,�~���89:�0, ��, with a 

mean of zero and an estimated standard deviation specific to each sampling method (i.e. 

����  and �!�"). The parameter <� is a fixed value (i.e. log(1.72)) that accounts for the 

increased field of view of the video cameras used in 2015 and 2016. 

 

Model Covariates 

 We incorporated a suite of covariates into our abundance and observation models. We 

selected covariates based on two key considerations. Our first consideration was to separate 

covariates that influenced the spatial distribution of fish from those that influenced temporal 

patterns in fish abundance. This was important because spatial and temporal patterns of 

abundance are modeled in two separate hierarchical layers (i.e. equation 1 and 3) to create a 

distinction between the fishery index, i.e. temporal patters in abundance at the meta-

population level (Nt), from spatial variation in the data due to patterns in the spatial 

distribution of fish and shifts in the sampling frame through time (��,�). Thus, we include a 

main and quadradic effect of latitude (lat and lat2), longitude (lon and lon2) and depth (depth 

and depth2), as well as the potential interaction between latitude and longitude as: 

 

����,�
� = =
:9>�.� + =@:9>��@ + =AB(C>ℎ�,� + =EB(C>ℎ�,�@ + =F:���,� +

=G:���,�@ + =H:9>�,�:���,�. 

(6) 

 

Our second key consideration was to separate covariates of the abundance and 

detection processes. This was important because our model likely has limited ability to 

disentangle systematic patterns in abundance from systematic patterns in detection when they 

are similar. Thus, we do not expect to be able to resolve the effects of covariates that have 

similar influences on patterns in abundance as they do on patterns in detection (Barker et al. 

2017). Under this consideration, the most useful covariates for predictive purposes are those 



 

 

that either, (i) only influence the abundance or the detection process, or (ii) have very 

different influences on the abundance and detection processes. Thus, we included main and 

quadratic effects of trap soak time (E and E2), main and quadradic effects of temperature 

(temp and temp2), water turbidity (turb), percent hardbottom substrate (sub), bottom relief 

(relf), current direction (dir1 and dir2), and attached biota (bio) into our chevron trap 

observation model as: 

 

����,�
��� = I
J�,� + I@J�,�

@ + IA>(8C�,� + IE>(8C�,�
@ + IF>K�L�,� + IGMKL�,� +

IH�(:N�,� + IOBP�1�,� + IRBP�2�,� + I
TLP��,�. 

(7) 

 

In the camera detection sub-model, we included turbidity, current direction, main and 

quadratic effects of bottom temperature, percent hardbottom substrate and attached biota as: 

 

����,�
!�" = U
 + U@>K�L�,� + UABP�1�,� + UEBP�2�,� + UF>(8C�,�

+ UG>(8C�,�
@ + UHMKL�,� + UO�(:N�,� + URLP��,� 

(8) 

 

where U
 allows for a systematic difference in the detection probability of the camera relative 

to the chevron trap. All covariates definitions are provided in Table 2 and JAGS model code 

is provided in Appendix A. 

 

Model Fit Test 

 We evaluated the fit of eight general model error structures using a posterior-

predictive check (Hooten and Hobbs 2015, Broms et al. 2016). The eight model error 

structures included models that either included or excluded the random variables �����, 

���� , and/or �!�". Because these parameters are random effects, they offer little predictive 

advantage when included in our models, however, evaluating how their inclusion or 

exclusion impacts general model fit is necessary to accurately describe the magnitude and 

shape of the residual error, to partition the residual error between biological and observation 

processes and to appropriately estimate the uncertainty in our model predictions (Kery and 

Schaub 2012).  

To perform the model fit evaluation, we first randomly selected 100 data points from 

each of six data categories to validate the fit of our models. Our categories were, (i) trap 

catches = zero prior to 2011, (ii) trap catches = zero post 2010, (iii) trap catches > zero prior 

to 2011, (iv) trap catches > zero post 2010, (v) camera SumCounts = zero, and (vi) camera 

SumCounts > zero. We expected that understanding how our model fit each of these data 

types would provide comprehensive insight into the model’s ability to back predict our 

fishery index. For each selected data point, we simulated the corresponding trap or video 

count from the posterior distributions of our model parameters and calculated a Pearson Chi-

squared statistic for each simulated and observed data point. We then summed the Chi-

squared values across data category to create six fit metrics. To assess whether the observed 

values of the fit metrics were likely given the assumptions of the models, we used the 

posterior samples of the simulated data to approximate the sampling distribution of these 

statistics for each data point. We reported the total number of validation data points where the 



 

 

observed Chi-squared statistic (V@) was within the 95% credible intervals of its predicted 

distribution for each data type.  

 

Variable Selection 

We assessed the importance of different covariates for describing variation in counts 

for the model with the simplest error structure judged to adequately fit the data. We expected 

that information theoretic approaches to variable selection, such as AIC and DIC, would 

likely be unreliable when applied to our SSM because of the complex nature of the 

hierarchical structured random effects (Celeux et al. 2006, Millar 2009, Hooten and Hobbs 

2015, Broms et al. 2016). Thus, we applied two alternative procedures for comparison. The 

first procedure was a Bayesian mixture model approach where each covariate effect 

parameter is multiplied by an “inclusion parameter” in the model (Royle and Dorazio 2008). 

The inclusion parameter is a Bernoulli trial with a prior probability of 0.5. When the 

parameter takes the value of one, the covariate influences the likelihood and when the 

parameter takes the value of zero it does not. The mean of the posterior sample of the 

inclusion parameters represents the probability that the “best” model includes the covariate. 

Values ≥ 0.5 indicate that models including the covariate have optimal predictive properties 

(Barbieri 2004). Thus, we used inclusion probabilities of ≥ 0.5 as an approximate indicator of 

statistical significance of the parameter. An added benefit of this variable selection procedure 

is that all model predictions are automatically model averaged. However, the procedure can 

substantially increase the time needed to perform the necessary MCMC iterations and the 

results can be sensitive to priors (Hooten and Hobbs 2015). The second method of variable 

selection was a simplified procedure based on credible interval overlap with zero that is 

common in the ecological literature (e.g., White et al. 2013, Beesley et al. 2014, King et al. 

2016). Thus, for the simplest error structure with adequate fit, we evaluated support for each 

covariate by assessing if the 95% Bayesian credible intervals overlap with zero. Parameters 

whose 95% credible intervals excluded zero were considered ‘statistically significant.’ 

 

Model Fitting Methods 

The posterior distributions of all parameters were estimated using a Gibbs sampler 

implemented in JAGS (Plummer 2003). We called JAGS from program R (R Core Team 

2015) using the library R2jags (Su and Yajima 2015). All prior distributions of log-scale 

covariate effect parameters were specified as diffuse normal distributions. Standard deviation 

parameters were specified as Gamma distributions with shape parameters equal to 0.01 and 

were verified to not influence the range of posterior distributions. Inference was drawn from 

10,000 posterior samples taken from two chains of 500,000 samples. We discarded the first 

250,000 values of each chain to remove the effects of initial values and thinned the chain to 

every 50th value. Convergence of all models was diagnosed by visual inspection of trace plots 

and Gelman-Rubin statistic ( R̂ ≤ 1.1 indicate model convergence, Gelman et al. 2004). 
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Appendix A. State-Space Model JAGS code 

 

model { 
#PREDICTIONS FOR MODEL FIT 
  for�i in 1:400�{ 
  tc.exp[i] <- trp_exp[ttnum[i]] 
  tc.pred[i] ~ dpois�trp_exp[ttnum[i]]�  
  } 
  for�i in 1:200�{ 
  cc.exp[i]  <- cam_exp[ccnum[i]] 
  cc.pred[i] ~ dpois�cam_exp[ccnum[i]]�  
  } 
#MODEL FOR TIME PERIOD 2011-2016 
 #CAMERA OBSERVATION MODEL   
  for�i in 1:cn�{ 
  cc[i] ~ dpois�cam_exp[i]� 
  cam_exp[i] <- exp�N[i]+log_pc[i]+epic[i]+camcorr[i]� 
  epic[i] ~ dnorm�0,tau[2]� T�-10,10� 
 #TRAP OBSERVATION MODEL  
  tc[i] ~ dpois�trp_exp[i]� 
  trp_exp[i]  <- exp�N[i]+log_pt[i]+log_ptc[i]+epit[i]� 
  epit[i] ~ dnorm�0,tau[1]� T�-10,10� 
 #ABUNDANCE MODEL 
  N[i] <- lam_cov[i] + Npred[year[i]] + epin[i] 
  epin[i] ~ dnorm�0,tau[4]� T�-10,10� 
  } 
#MODEL FOR TIME PERIOD 1990-2010   
  for�i in �cn+1�:n�{ 
 #TRAP OBSERVATION MODEL  
  tc[i] ~ dpois�trp_exp[i]� 
  trp_exp[i]<- exp�N[i]+log_pt[i]+epit[i]� 
  epit[i] ~ dnorm�0,tau[1]� T�-10,10� 
 #ABUNDANCE MODEL 
  N[i] <- lam_cov[i] + Npred[year[i]] + epin[i] 
  epin[i] ~ dnorm�0,tau[4]� T�-10,10� 
  }   
#COVARIATE VECTORS 
 #Abundance covariates 
   lam_cov[1:n] <- w[1]*bet[1]*lat[] + w[2]*bet[2]*lat2[] + w[3]*bet[3]*depth[] +  
                   w[4]*bet[4]*depth2[] + w[5]*bet[5]*lon[] + w[6]*bet[6]*lon2[] +  
                   w[7]*bet[7]*lat[]*lon[] 
 #Trap detection covariates   
   log_pt[1:n] <- w[8]*eta[1]*effort[] + w[9]*eta[2]*effort2[] + w[10]*eta[3]*temp[] +  
                  w[11]*eta[4]*temp2[]  
   log_ptc[1:cn] <- w[12]*eta[5]*turb[] + w[13]*eta[6]*substrate[] + w[14]*eta[7]*relief[] +  
                    w[15]*eta[8]*dir1[] + w[16]*eta[9]*dir2[] + w[17]*eta[10]*biota[]              
 #Camera detection covariates 



 

 

   log_pc[1:cn] <- phi[1] + w[18]*phi[2]*turb[] + w[19]*phi[3]*dir1[] + w[20]*phi[4]*dir2[] +  
                   w[21]*phi[5]*ctemp[] + w[22]*phi[6]*ctemp2[] + w[23]*phi[7]*substrate[] + 
                   w[24]*phi[8]*relief[] + w[25]*phi[9]*biota[] 
 
#TEMPORAL ABUNDANCE PROCESS MODEL �exponential population growth�   
  for�i in 2:nyr�{ 
  Npred[i] <- Npred[i-1] + r[i] 
  r[i] ~ dnorm�rmu,tau[3]� 
  } 
  Npred[1] ~ dnorm�0,.1� 
  r[1] ~ dnorm�rmu,tau[3]� 
  rmu ~ dnorm�0,.1� 
#PRIOR DISTRIBUTIONS 
  for�i in 1:7�{bet[i] ~ dnorm�0,.1�} 
  for�i in 1:10�{eta[i] ~ dnorm�0,.1�} 
  for�i in 1:9�{phi[i] ~ dnorm�0,.1�} 
  for�i in 1:5�{ 
  tau[i] <- pow�sig[i],-2� 
  sig[i] ~ dt�0,1/�0.3^2�,2� T�0,10� 
  } 
#VARIABLE SELECTION   
  for�i in 1:25�{w[i] <-1}#~ dbern�.5�} 
} 


