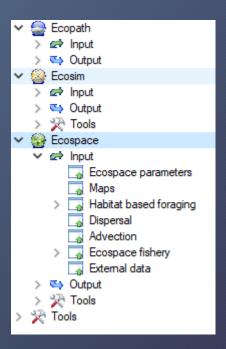
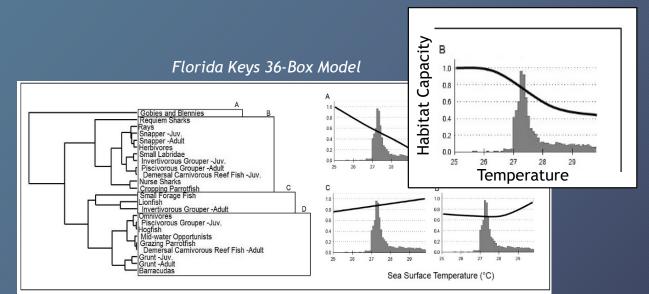
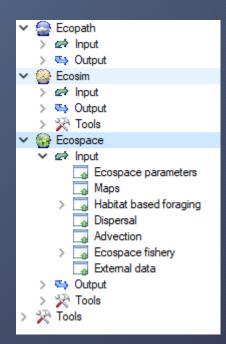
Ecospace Development Update

Luke McEachron
Florida Fish and Wildlife Conservation Commission
St. Petersburg, FL
Luke.McEachron@myfwc.com

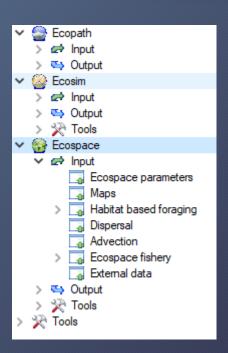

Outline

- Model Background
- Meeting Update
- Model Progress
- Review Panel


Model Background


- Ecopath, Ecosim, and Ecospace (EwE)
 - Snapshot in time (Ecopath) ->
 - Trophic dynamics over time (Ecosim) ->
 - Trophic dynamics over time and space (Ecospace)

Model Background


- Ecopath, Ecosim, and Ecospace (EwE)
 - Trophic dynamics over time and space (Ecospace)
 - Habitat Capacity Functions
 - Any raster product with ecological importance

Model Background

- Ecopath, Ecosim, and Ecospace (EwE)
 - Trophic dynamics over time and space (Ecospace)
 - Maps and Environmental Drivers
 - Known environmental relationships
 - Data availability
 - Resolution

- Maps and Environmental Drivers
 - Known environmental relationships
 - Data availability
 - Resolution

Hydrobiologia (2008) 612:5-20 DOI 10.1007/s10750-008-9493-y

FISH HABITAT MAPPING

Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS

Vasilis D. Valavanis · Graham J. Pierce · Alain F. Zuur · Andreas Palialexis · Anatoly Saveliev · Isidora Katara · Jianjun Wang

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2012) 21, 272-281

Bio-ORACLE: a global environmental dataset for marine species distribution modelling

Lennert Tyberghein^{1*}, Heroen Verbruggen¹, Klaas Pauly¹, Charles Troupin², Frederic Mineur³ and Olivier De Clerck¹

Ocean Heat Content Reveals Secrets of Fish Migrations

Jiangang Luo, Jerald S. Ault ☑, Lynn K. Shay, John P. Hoolihan, Eric D. Prince, Craig A. Brown, Jay R. Rooker Published: October 20, 2015 • https://doi.org/10.1371/journal.pone.0141101

- Maps and Environmental Drivers
 - Known environmental relationships
 - Discussed ~70 possible covariates
 - Ranked covariates by "importance"

	SST Maximum	SST Mean	SST Minimum	SST	May		Seabed Temp	Bottom Temp	Salinity	Bottom Salinity				Chla	Sum	Win	Chla Prim Prod	PAR	рН
SST Maximum	1																		Г
SST Mean	0.984	1																	Г
SST Minimum	0.955	0.991	1																Г
SST Range	0.129	-0.043	-0.169	1															Г
SST May_Oct	0.968	0.991	0.988	-0.089	1														Г
SST Nov Apr	0.969	0.979	0.968	-0.014	0.969	1													Г
Seabed Temp	0.327	0.298	0.259	0.219	0.283	0.256	1												Г
Bottom Temp	0.841	0.828	0.801	0.113	0.816	0.824	0.346	1											Г
Salinity	0.316	0.370	0.393	-0.282	0.370	0.323	0.031	0.354	1										Г
Bottom Salinity	0.074	0.092	0.103	-0.102	0.088	0.087	-0.108	0.127	0.242	1									Г
Chla Mean	-0.235	-0.300	-0.341	0.371	-0.315	-0.269	0.303	-0.214	-0.536	-0.162	1								Г
Chla Max	-0.051	-0.095	-0.126	0.260	-0.103	-0.071	0.212	-0.050	-0.438	-0.103	0.816	1							Г
Chla Min	-0.008	-0.036	-0.056	0.166	-0.036	-0.012	0.147	-0.006	-0.376	-0.022	0.620	0.715	1						Г
Chla Range	-0.051	-0.092	-0.119	0.235	-0.100	-0.073	0.189	-0.051	-0.376	-0.111	0.731	0.948	0.465	1					
Chla Sum_Max	-0.030	-0.072	-0.102	0.256	-0.077	-0.048	0.298	-0.013	-0.437	-0.110	0.715	0.713	0.652	0.604	1				
Chla Win_Max	0.003	-0.036	-0.071	0.254	-0.047	-0.046	0.399	-0.022	-0.267	-0.111	0.604	0.544	0.398	0.498	0.618	1			
Chla PrimProd	0.121	0.050	-0.007	0.423	0.031	0.051	0.494	0.119	-0.296	-0.157	0.682	0.525	0.285	0.513	0.526	0.581	1		Г
PAR	0.892	0.920	0.927	-0.122	0.924	0.907	0.246	0.729	0.322	0.083	-0.230	-0.036	-0.008	-0.032	-0.030	-0.022	0.062	1	Г
рН	0.446	0.429	0.409	0.106	0.423	0.429	0.010	0.438	0.205	0.013	-0.260	-0.151	-0.172	-0.108	-0.198	-0.113	-0.088	0.354	Г

Hydrobiologia (2008) 612:5-20 DOI 10.1007/s10750-008-9493-y

FISH HABITAT MAPPING

Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS

Vasilis D. Valavanis · Graham J. Pierce · Alain F. Zuur · Andreas Palialexis · Anatoly Saveliev · Isidora Katara · Jianjun Wang

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2012) 21, 272-281

RESEARCH PAPER

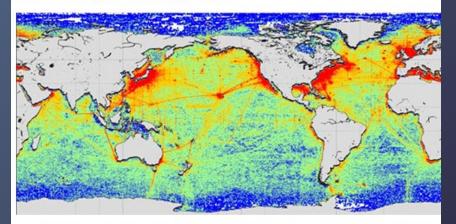
Bio-ORACLE: a global environmental dataset for marine species distribution modelling

Lennert Tyberghein^{1*}, Heroen Verbruggen¹, Klaas Pauly¹, Charles Troupin², Frederic Mineur³ and Olivier De Clerck¹

Ocean Heat Content Reveals Secrets of Fish Migrations

Jiangang Luo, Jerald S. Ault ☑, Lynn K. Shay, John P. Hoolihan, Eric D. Prince, Craig A. Brown, Jay R. Rooker Published: October 20, 2015 • https://doi.org/10.1371/journal.pone.0141101

- Maps and Environmental Drivers
 - Known environmental relationships
 - Discussed ~70 possible covariates
 - Ranked covariates by "importance"


#	Importance	Environmental Driver or Covariate							
1	1	Depth							
2	1	Temperature							
3	2	Current Velocity							
4	3	Salinity							
5	3	DO Range							
6	4	Ph							

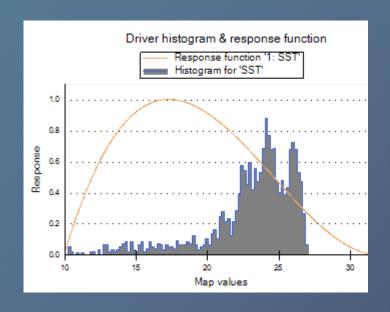
- Maps and Environmental Drivers
 - Known environmental relationships
 - Data availability

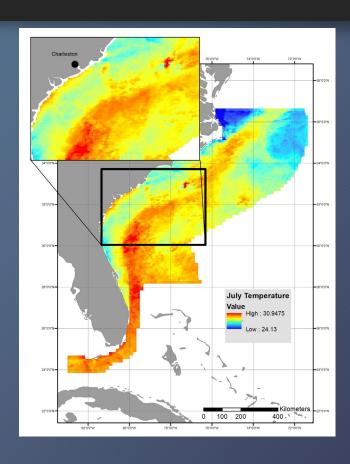
#	Importance	Environmental Driver or										
#	Importance	Covariate	Source	Resolution	Temporal Res.							
1	1	Depth	SAFMC, FWC	TBD	_							
2	1	Temperature	NASA (Aqua-MODIS)	4 Km	2002 -							
3	2	Current Velocity	Model Derived (NEMO)	9 Km								
4	3	Salinity	Model Derived (NEMO, WOD)	9 Km								
5	3	DO Range	WOD Interpolation	TBD	TBD							
6	4	Ph	WOD Interpolation	TBD	TBD							

WORLD OCEAN DATABASE

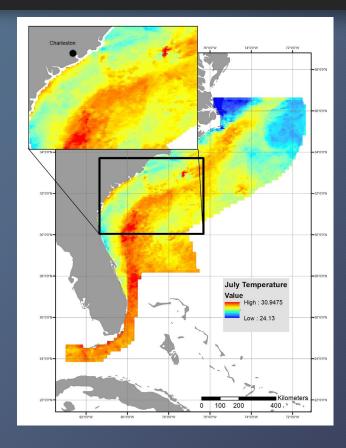
The World Ocean Database (WOD) is an NCEI product and an <u>IODE</u> of (International Oceanographic Data and Information Exchange) project. This work is funded in partnership with the NOAA OAR <u>Ocean Observing and Monitoring Division</u>.

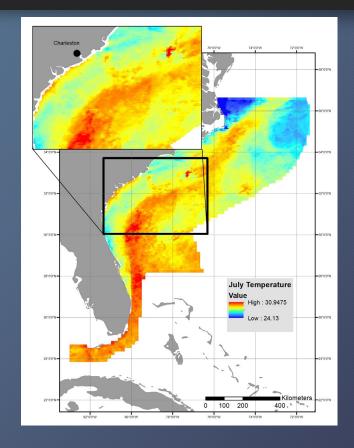
The World Ocean Database 2018 updates \square previous versions of the WOD to include approximately 3 million new oceanographic casts added to the WOD and renewed quality control.

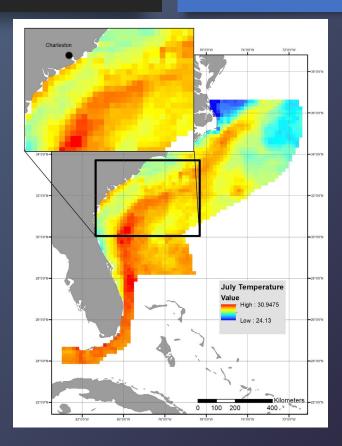

- Maps and Environmental Drivers
 - Known environmental relationships
 - Data availability
 - 27 trophic groups and counting


			DO Range	DO moon	Depth	Depth	Salinity	Salinity	Current Velocity	Current	Temperature	e Temperature	Dh rango
Group Name	roup Name Scientific name		DO Range	DO IIIGAII	Range	mean	Range	mean	range	mean	range	mean	i ii ialige
Coastal bottlenose dolphin	Tursiops truncatus (coastal ecotype)	Coastal bottlenose dolphin											
Offshore dolphins	olphins Tursiops truncatus (offshore ecotype)												
	Delphinus spp.	Common dolphin											
Pilot whales	Globicephala macrorhynchus	Short-finned pilot whale											
Beaked whales	Beaked whales Mesoplodon bidens												
	Ziphius cavirostris	Cuvier's beaked whale											
Sperm whales	Physeter macrocephalus	Sperm whale											
	Kogia simus	Dwarf sperm											
Baleen whales	Megaptera novaeangliae	Humpback whales											
Manatees	Trichechus manatus latirostris	Florida manatee											
Planktivorous sharks	Rhincodon typus	whale shark											
	Cetorhinus maximus	basking shark											
Large coastal sharks	Carcharhinus leucas	bull shark			10-50m	30 m	0->30%				11->30		
	Carcharhinus obscurus	dusky shark											
Small coastal sharks	Rhizoprionodon terraenovae	Atlantic sharpnose shark											
	Sphyrna tiburo	bonnethead											
Dogfish sharks	Mustelus canis	smooth dogfish											
	Hexanchus griseus	sixgill shark											
Pelagic sharks	Isurus oxyrinchus	shortfin mako											
	Sphryna lewini	scalloped hammerhead											
Pelagic rays	Rhinoptera bonasus	cownose ray											
	Manta birostris	Atlantic manta ray											
Demersal rays/skates	Raja eglanteria	clearnose skate											
	Dasyatis sayi	bluntnose stingray											
Adult king mackerel	Scomberomorus cavalla	king mackerel											
Juvenile king mackerel	Scomberomorus cavalla	king mackerel											
Spanish mackerel	Scomberomorus maculatus	Spanish mackerel			10-50m	30 m	18->30%	5			21->30		
Juv Spanish mackerel	Scomberomorus maculatus	Spanish mackerel			10-50m	30 m	.5->30%				11->30		
Bluefish	Pomatomus saltatrix	bluefish			10-200m	105 m	18->30%	;			16-25	20.5	5

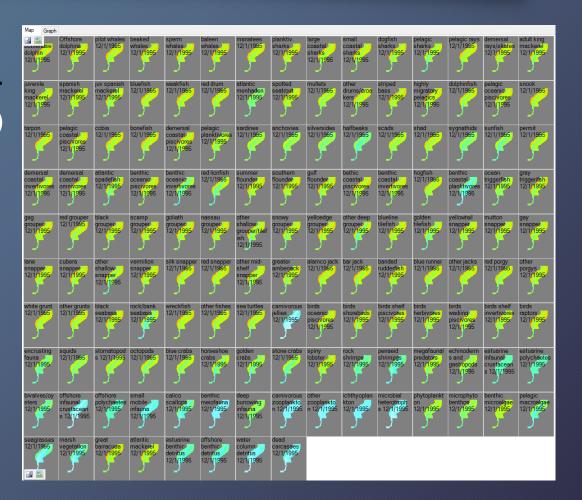
- Identify potential computational and logistical issues
- Establish base extent maps

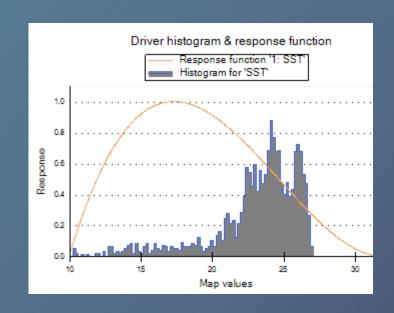

- Sea Surface Temperature
 - 4 Km MODIS SST, one year (2017)

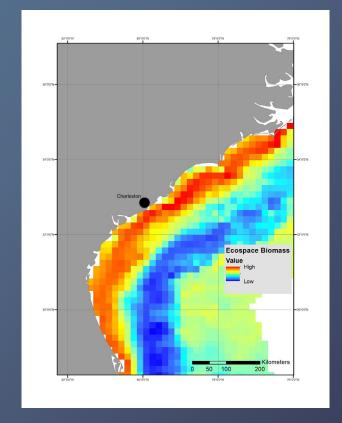

4 Km. Resolution

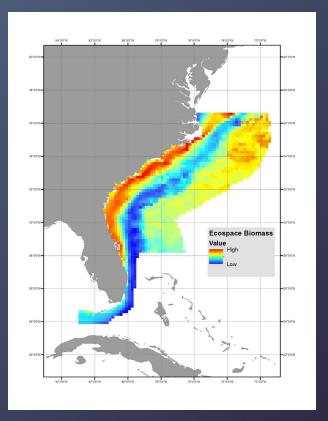

- Sea Surface Temperature
 - 4 Km MODIS SST, one year (2017)
 - 15 Km MODIS SST, one year (2017)

4 Km. Resolution


- Sea Surface Temperature
 - 4 Km MODIS SST, one year (2017)
 - 15 Km MODIS SST, one year (2017)




15 Km. Resolution


- Sea Surface Temperature
 - 4 Km MODIS SST, one year (2017)
 - 15 Km MODIS SST, one year (2017)

- Sea Surface Temperature
 - 4 Km MODIS SST, one year (2017)
 - 15 Km MODIS SST, one year (2017)

Timeline Moving Forward

- Review panel webinar Nov/Dec
 - Ecopath and Ecosim balancing
- Continue to investigate environmental relationships and data availability given resolution tradeoffs
- Ecospace development update April 2020 SSC meeting