Revised stock assessments of Black Sea Bass, Blueline Tilefish, Red Grouper, and Vermilion Snapper in the U.S. South Atlantic region

Prepared by NMFS Southeast Fisheries Science Center

September 2018

Table of Contents

Executive Summary	3
Data Update	4
Data Update Tables	5–7
Black Sea Bass	8
Black Sea Bass Tables)—12
Black Sea Bass Figures	-14
Blueline Tilefish	15
Blueline Tilefish Tables	3–21
Blueline Tilefish Figures22	2–25
Red Grouper	26
Red Grouper Tables	3–31
Red Grouper Figures	-33
Vermilion Snapper	34
Vermilion Snapper Tables	<u>;</u> —38
Vermilion Snapper Figures)-40

1 Executive Summary

This report presents results from four SEDAR stock assessments revised to account for recently adjusted MRIP estimates of recreational catch in the South Atlantic region. The four stocks are Black Sea Bass (SEDAR-56), Blueline Tilefish (SEDAR-50), Red Grouper (SEDAR-53), and Vermilion Snapper (SEDAR-55). In each case, assessment and projection methodologies were identical to those applied previously, and the sole differences in model inputs were the MRIP time series of recreational landings and discards. On average across species, the adjusted MRIP estimates were about twice as large as they were in the previous SEDAR assessments. That ratio varied annually but generally trended upward over the last decade, when the adjusted catch ranged between two and three times as large as before. Across species, the primary effect of increased recreational catch estimates was to scale up the total abundance perceived by the assessment model. The effects on stock status (SSB/MSST or B/MSST) and fishery status (F_{current}/F_{MSY}) differed by species, and in some cases altered the qualitative results of the assessment. For Black Sea Bass, the stock was found to be overfished (SSB2016/MSST=0.98) and experiencing overfishing (F_{current}/F_{MSY}=1.4), results that were qualitatively different from SEDAR-56 for both status indicators. For Blueline Tilefish south of Cape Hatteras, the stock was found to be above the overfished threshold (B₂₀₁₅/MSST=1.09), but unlike the finding of SEDAR-50, was found by this assessment to be experiencing overfishing ($F_{current}/F_{MSY}$ =1.44). Blueline Tilefish north of Cape Hatteras were assessed using data-limited methods in SEDAR-50, and those models were re-run to provide adjusted Total Allowable Catch. For Red Grouper, the stock was found to be overfished $(SSB_{2015}/MSST=0.25)$ and experiencing overfishing ($F_{current}/F_{MSY}=3.43$), similar to the findings of SEDAR-53 but more extreme in both status indicators. For Vermilion Snapper, the stock was found to be above the overfished threshold (SSB₂₀₁₆/MSST=0.1.38), and was not experiencing overfishing (F_{current}/F_{MSY}=0.85), similar to previous findings. For each of the revised assessments, this report characterizes uncertainty in stock status, fishery status, and other management quantities, and it repeats projection scenarios that previously were adopted for setting ABCs and OFLs, and in the case of red grouper, a rebuilding time frame.

2 Data Update

In July 2018, the Marine Recreational Information Program (MRIP) provided revised estimates of recreational landings, discards, and effort to calibrate for the transition from the Coastal Household Telephone Survey (CHTS) to the Fishing Effort Survey (FES) as well as the Access Point Angler Intercept Survey (APAIS).

Prior to MRIP providing calibrated estimates, uncalibrated MRFSS/MRIP estimates (BASE) were used in stock assessments. Recent stock assessments in the South Atlantic, including those of Black Sea Bass, Blueline Tilefish, Red Grouper, and Vermilion Snapper, utilized MRIP data based on the APAIS-calibrated estimates (ACAL). The new calibration method utilizes APAIS- and FES-calibrated estimates (FCAL).

To adjust the ACAL landings and discard estimates for these four recent stock assessments, data were downloaded from the MRIP website (Calibration Catch Estimates Comparison Query) for each species (landings and discards). A 'scaling' vector was calculated as FCAL/ACAL, to determine the differences between these two estimates by year (Table 2.1). This scaling vector was then multiplied by the previous ACAL estimates of landings or discards used in the previous assessment to convert to FCAL estimates, and these FCAL values were used in these current assessments (Table 2.2).

For developing the scaling vectors, we used the same MRIP modes that were considered in the previous assessments, as described in the SEDAR assessment reports. Black Sea Bass and Red Grouper included all modes, and Blueline Tilefish and Vermilion Snapper included only charter and private boats.

Blueline Tilefish had limited data available to create the FCAL/ACAL scaling vector. Therefore Snowy Grouper and Tilefish (Golden) were used as a proxy for adjusting the landings estimates, and Snowy Grouper, Tilefish (Golden), and Red Porgy were used as a proxy for adjusting the discard estimates. In both cases (landings and discards), FCAL/ACAL vectors were computed for each of the proxy species, and then averaged into a single vector.

MRIP data begin in 1981, and the initial year of each assessment was prior to 1981. Thus, for years prior to 1981, adjustments to landings and discards were computed using the geometric mean of the scaling vector from the period 1981-1990.

	Red Grouper		Black S	ea Bass	Vermilior	n Snapper	Blueline Tilefish	
Year	L	D	L	D	L	D	L	D
pre-1981	2.19	2.63	1.83	2.36	1.55	1.64	1.67	1.57
1981	2.87	1.00	2.83	3.08	2.77	1.00	4.43	1.00
1982	1.82	3.50	1.90	2.35	1.34	1.15	1.00	2.34
1983	2.36	1.44	1.42	2.33	1.28	1.00	1.59	1.00
1984	2.56	7.07	1.82	2.04	1.04	1.00	3.98	1.00
1985	1.40	3.13	1.78	2.09	1.38	3.49	1.21	1.51
1986	2.10	1.54	2.12	2.76	2.37	1.33	1.47	1.97
1987	2.37	4.04	1.65	1.95	1.46	1.05	1.07	1.73
1988	2.80	2.01	1.81	2.61	1.72	2.16	1.77	0.95
1989	1.26	1.64	1.57	2.34	1.37	2.58	1.31	3.24
1990	3.28	2.68	1.71	2.23	1.49	2.73	1.37	2.50
1991	1.60	1.33	1.85	2.28	1.31	1.17	1.00	1.00
1992	1.56	2.23	1.97	2.35	1.14	2.19	1.72	1.32
1993	2.66	2.44	1.80	2.24	1.60	2.02	1.00	1.38
1994	2.01	2.09	1.71	1.92	1.15	1.83	1.15	1.08
1995	1.52	1.73	1.52	1.91	1.27	1.66	1.00	1.71
1996	1.44	2.35	1.94	2.12	1.69	1.92	1.60	2.03
1997	1.22	1.84	1.74	2.03	1.30	1.87	1.27	3.41
1998	1.81	1.57	1.88	2.20	1.35	2.53	1.27	2.34
1999	2.06	2.75	2.09	2.77	1.61	1.85	1.00	2.11
2000	1.83	2.56	2.09	2.29	1.61	1.75	1.10	2.39
2001	1.95	2.06	2.17	2.19	1.65	1.99	1.06	1.88
2002	1.67	2.86	2.26	2.52	1.41	2.40	1.07	1.33
2003	1.75	2.44	1.82	2.11	1.85	2.37	1.24	1.77
2004	1.69	2.12	2.02	2.12	1.38	1.78	1.22	1.64
2005	1.91	2.05	2.01	2.25	1.37	1.83	1.04	1.76
2006	1.59	2.13	2.20	2.31	1.63	2.59	1.39	1.10
2007	1.70	1.60	1.73	1.98	1.76	1.62	1.06	1.23
2008	1.75	2.19	1.89	2.03	1.74	2.04	1.00	1.78
2009	2.53	2.50	2.32	2.69	2.13	2.45	2.38	2.07
2010	1.72	2.72	2.55	2.55	1.73	1.99	1.88	1.46
2011	2.22	2.25	2.33	2.77	2.60	2.47	1.54	1.71
2012	2.34	2.31	2.11	2.44	1.39	2.36	2.02	1.46
2013	2.84	2.51	2.56	2.56	2.30	2.07	1.72	1.47
2014	2.45	4.64	2.98	3.09	2.34	2.87	1.51	2.54
2015	3.03	2.98	3.25	3.28	2.19	2.45	1.72	1.71
2016	2.50	2.65	2.73	3.19	2.68	3.06	1.63	2.83
2017	3.75	2.07	2.99	3.47	2.70	2.38	1.35	1.89

Table 2.1. Vectors of scaling for each species applied to landings (L) and discards (D). For years pre-1981, the geometric mean of the scaling vector was estimated from the period 1981–1990.

					Vermilion		Blueline Tilefish		Blueline Tilefish	
	Red Gr	ouper	Black S	ea Bass	Snap	oper	S Cape Ha	atteras	N Cape	Hatteras
Year	L	D	L	D	L	D	L	D	L	D
1947					7.7	3.5				
1948					15.4	7.0				
1949					23.1	10.5				
1950					30.9	14.0				
1951					38.6	17.6				
1952					46.3	21.1				
1953					54.0	24.6				
1954					61.7	28.1				
1955					69.4	31.6				
1956					76.2	34.7				
1957					83.0	37.8				
1958					89.8	40.9	0.2	0.0	0.2	0.0
1959					96.6	43.9	0.1	0.0	0.2	0.0
1960					103.4	47.0	0.0	0.0	0.0	0.0
1961					112.7	51.3	0.0	0.0	0.0	0.0
1962					122.1	55.6	0.7	0.0	0.4	0.0
1963					131.4	59.8	0.7	0.0	0.2	0.0
1964					140.8	64.1	0.1	0.0	0.6	0.0
1965					150.2	68.3	5.5	0.0	0.0	0.0
1966					151.0	68.7	1.0	0.0	0.0	0.0
1967					151.9	69.1	2.4	0.0	0.0	0.0
1968					152.8	69.5	1.1	0.0	0.0	0.0
1969					153.7	69.9	0.8	0.0	0.0	0.0
1970					154.6	70.3	2.2	0.0	0.0	0.0
1971					169.8	77.3	4.3	0.0	0.0	0.0
1972					185.1	84.2	2.6	0.0	0.0	0.0
1973					200.4	91.2	27.4	0.0	0.0	0.0
1974					215.7	98.1	44.5	0.0	0.0	0.0
1975					230.9	105.1	55.9	0.0	0.0	0.0
1976					233.5	106.3	63.9	0.0	0.0	0.0
1977					236.2	107.5	38.1	0.0	0.0	0.0
1978					238.8	108.6	80.6	0.0	31.5	0.0
1979					241.4	109.8	60.6	0.0	9.9	0.0
1980					244.0	111.0	163.5	0.0	10.6	0.0

Table 2.2. The adjusted landings (L) and discards (D) used in these revised assessments by stock. Units for Blueline Tilefish landings and discards are 1000 lb, as are units for Black Sea Bass landings; units for all other columns are 1000 fish.

Table 2.2 (cont.)

				_	Verr	nilion	Blueline	Tilefish	Blueline Tilefish	
Mara	Red G	rouper	Black S	ea Bass	Sna	pper	S Cape Ha	atteras	N Cape	Hatteras
Year	L	D	L	D	L	D	L	D	L	<u> </u>
1981	333.8	16.8	2159.4	5958.8	37.5	63.6	417.3	0.0	25.4	0.0
1982	283.1	5/./	4507.5	2822.1	1/9.6	27.0	10/4./	0.0	25.2	0.0
1983	650.3	216.7	1698.5	1163.3	432.9	0.4	552.9	0.0	31.7	0.0
1984	650.8	1282.3	4561.7	2581.1	95.1	6.6	487.3	0.0	42.1	0.0
1985	133.2	15.7	2771.9	2690.8	475.2	32.5	318.2	0.0	21.2	0.0
1986	238.4	48.9	1682.9	2928.4	111.3	30.5	245.6	0.0	20.8	0.0
1987	221.0	427.5	2147.9	2904.5	187.0	2.7	137.5	0.0	26.2	0.0
1988	119.3	78.4	4436.1	3388.1	198.7	149.2	92.6	0.0	29.7	0.0
1989	111.2	9.4	1992.2	2689.0	312.0	414.9	98.9	0.0	28.2	0.0
1990	36.3	38.9	1365.1	1356.5	198.9	550.2	138.9	0.0	43.4	0.0
1991	12.0	198.2	2312.3	2349.6	210.4	135.0	181.9	22.2	62.7	0.0
1992	41.5	331.7	1714.2	2524.0	94.4	270.8	206.9	9.3	77.4	0.0
1993	148.3	154.1	1094.4	2161.7	158.1	230.4	193.4	0.0	39.5	0.0
1994	83.6	233.4	1146.8	3245.2	62.0	266.5	147.3	0.0	42.3	0.0
1995	64.8	177.9	1102.5	2400.6	76.8	457.3	172.4	0.0	31.0	0.0
1996	78.9	691.0	1565.9	2210.3	113.0	122.4	122.8	0.0	43.6	0.0
1997	57.7	571.8	1157.0	2870.4	105.2	115.1	163.6	0.0	165.4	0.0
1998	72.2	139.2	814.9	2225.4	85.4	342.2	88.7	3.5	19.4	0.0
1999	48.5	241.8	805.0	4117.5	197.0	983.8	86.3	45.1	33.4	0.0
2000	38.2	625.1	853.4	4665.3	308.5	937.6	92.4	1.3	20.4	0.0
2001	41.9	289.6	1537.7	4917.1	275.4	518.4	108.1	0.0	47.4	0.0
2002	85.5	238.4	960.2	3808.1	188.1	626.1	88.1	0.7	178.1	0.0
2003	95.0	288.7	956.2	3713.5	297.2	985.6	101.8	7.0	118.3	35.7
2004	100.0	403.9	3011.1	7314.8	261.3	453.9	78.0	0.9	75.8	0.9
2005	75.5	368.7	1882.9	6672.0	141.7	295.1	62.2	41.5	114.4	20.0
2006	151.5	331.0	1769.1	7304.2	321.1	465.8	73.3	0.0	527.6	8.9
2007	255.1	161.8	1111.9	6671.3	188.7	545.0	58.0	1.2	646.7	31.4
2008	398.9	218.1	928.9	6310.0	393.2	2217.2	53.2	0.0	805.6	1.1
2009	404.0	302.3	952.4	6679.9	379.0	936.5	136.2	11.6	755.4	1.2
2010	38.1	295.4	1967.7	8626.1	124.0	376.8	124.2	0.0	505.6	21.2
2011	81.5	173.0	1406.5	10833.0	188.5	163.9	38.1	0.3	259.0	4.6
2012	209.7	223.6	1248.1	14883.2	75.8	250.4	100.4	4.5	529.1	11.8
2013	84.4	313.3	753.7	7184.0	185.1	35.6	636.2	6.5	368.0	2.0
2014	64.3	488.2	1419.4	15253.0	466.7	501.5	146.3	47.1	470.5	3.4
2015	78.2	277.4	949.2	10842.9	314.4	598.4	108.9	70.0	262.3	17.2
2016			676.4	10244.1	523.9	818.6				

3 Black Sea Bass

3.1. Assessment methods

This revised Black Sea Bass assessment applied methods identical to those of the most recent SEDAR assessment (SEDAR-56 2018). Details can be found in that report, and therefore the methods are only reviewed briefly here. The assessment model was an integrated age-structured model fitted to data on landings and discards, indices of abundance, and age or length compositions. It was implemented using the Beaufort Assessment Model (BAM), including the Monte Carlo/Bootstrap (MCB) approach to quantify uncertainty. The assessment time frame was 1978–2016.

The only difference in input data between this assessment and that of SEDAR-56 was the adjustment to MRIP landings and discards (Section 2). Annual recreational landings estimates were on average about 2 times higher than before the adjustment (range: 1.4 to 3.2 times higher), and annual recreational discard estimates about 2.4 times higher (range: 1.9 to 3.3 times higher).

The lower bound set for the range of catchability of the CVID index had to be lowered, as the parameter hit the lower bound in initial runs with the new MRIP data. No further bounding issues were observed.

The fishing status reported in SEDAR-56 2018 was computed as the geometric mean from the period 2015–2016, although the SEDAR-56 report erroneously stated that it was from 2014–2016. For direct comparison to previously reported values, this report uses the geometric mean from the period 2015–2016. The geometric mean fishing status from SEDAR-56 for 2014–2016 was $F_{2014-2016}/F_{MSY} = 0.79$, and for 2015–2016 was $F_{2015-2016}/F_{MSY} = 0.64$. The choice of years does not affect projections, as only the terminal year's F (i.e., $F_{current}=F_{2016}$) was used to forecast catch in the interim years.

3.2. Assessment results

The model fits to all data sources were quite similar to those from SEDAR-56, as were other model diagnostics. The primary effect of increased MRIP estimates was that the assessment model required more fish to match the larger level of landings and discards. In effect, the perceived scale of abundance is larger, which the assessment model accomplished by increasing the estimate of unfished age-0 recruitment, R_0 . The SEDAR-56 estimate was $\widehat{R_0} = 359,280$ fish, whereas the revised estimate is $\widehat{R_0} = 545,945$ fish, which is about 1.5 times higher. This translates into higher levels of SSB and recruits (Fig. 3.1). However, the estimate of SSB_{MSY} (Table 3.1) increased by about the same ratio (1.57), so the trend in the relative status time series (SSB/SSB_{MSY} and SSB/MSST) changed little with this revision (Fig. 3.1). Similarly, the estimated time series of fishing mortality rate changed little (Fig. 3.1), because the model predicted more fish available to support the increased level of removals. The exception to this was in the terminal years of the assessment, where the revision estimated higher levels of fishing than were previously predicted. This occurred because the MRIP-adjusted removals during the last several years of the assessment period were all above average, including landings and discard adjustments that were 1-2.5 standard deviations above normal. The higher values of F/F_{MSY} near the end of the assessment period led to increased certainty about the overfishing status (Fig. 3.2).

Contrary to SEDAR-56, this revised assessment found the stock to be overfished and experiencing overfishing (Table 3.1; Fig. 3.2). The stock status was estimated to be $SSB_{2015}/MSST=0.98$, and the fishing status was estimated to be $F_{2015-2016}/F_{MSY}=1.4$. These qualitative findings (overfished,

overfishing) were displayed by almost 60% of the MCB runs, though the results exhibit considerable uncertainty (Fig. 3.2).

3.3. Projections

Two projection scenarios were identified as necessary for management for SEDAR-56. Using methodology identical to SEDAR-56 (2018), the two scenarios were repeated here:

- Scenario 1: F=F_{MSY}
- Scenario 2: F at P*=0.375 with low recruitment (taken from 1991-2016)

Scenario 1 was included for quantifying OFL and Scenario 2 was included for quantifying ABC.

Results for Scenario 1 and 2 are provided in Tables 3.2 and 3.3 respectively.

3.4. Discussion and recommendations

In SEDAR-56, the general recreational fleet was the dominant source of Black Sea Bass landings and discards, and thus it is not surprising that assessment results are somewhat sensitive to those inputs, particularly the perceived scale of absolute abundance estimated by the assessment. Given that the assessment model appeared robust to the MRIP-adjusted landings and discards, as evidenced by fits to data and standard model diagnostics, the assessment results and corresponding projections appear to be adequate for resource management.

3.5. References

SEDAR-56. 2018. SEDAR 56 – South Atlantic Black Seabass Assessment Report. SEDAR. North Charleston SC. Available online at: http://sedarweb.org/sedar-56.

Table 3.1. Status indicators, benchmarks, and related quantities for Black Sea Bass. Estimates are values from the base run of the assessment model, after adjusting for MRIP revisions to estimates of recreational landings and discards. Median values and measures of precision (standard errors, SE) are from the Monte Carlo/Bootstrap analysis. For comparison, the previous SEDAR-56 estimates are in parentheses.

Quantity	Units	Estimate (Previous)	Median	SE
F _{MSY}	У ⁻¹	0.29 (0.31)	0.32	0.06
85%F _{MSY}	У ⁻¹	0.19 (0.26)	0.27	0.06
75%F _{MSY}	y ⁻¹	0.13 (0.23)	0.24	0.05
65%F _{MSY}	y ⁻¹	0.09 (0.20)	0.21	0.05
B _{MSY}	mt	10775.9 (6824)	10443.8	1549
SSB _{MSY}	1E10 eggs	471.5 (300)	456.0	64.5
MSST	1E10 eggs	292.4 (186)	286.2	52.7
MSY	1000 lb	1272.4 (935)	1311.1	325.7
D _{MSY}	1000 fish	2194.2 (1421)	2082.1	357.6
R _{MSY}	1000 age-0 fish	55649.2 (36400)	54431.4	12067
Y at 85%F _{MSY}	1000 lb	1261.1 (793.9)	1299.7	323.3
Y at 75%F _{MSY}	1000 lb	1238.0 (701.25)	1276.2	318.3
Y at 65%F _{MSY}	1000 lb	1198.5 (607.75)	1236.1	309.8
F ₂₀₁₅₋₂₀₁₆ /F _{MSY}	-	1.40 (0.64)	1.31	0.52
SSB ₂₀₁₆ /MSST	-	0.98 (1.15)	0.93	0.19
SSB ₂₀₁₆ /SSB _{MSY}	_	0.61 (0.71)	0.58	0.11

Table 3.2. Black Sea Bass projections with $F=F_{MSY}$ starting in 2019. R = number of age-0 recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (1E10 eggs), L = landings expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension "b" indicates expected values (deterministic) from the base run; the extension "med" indicates median values from the stochastic projections. The last column (extension "un") is from a previous projection analogous to this one but with unadjusted MRIP landings, and it is included here only for comparison to the current projection.

Year	R.b (1000)	R.med (1000)	F.b	F.med	S.b (1E10 eggs)	S.med (1E10 eggs)	L.b (1000)	L.med (1000)	L.b (1000 lb)	L.med (1000 lb)	D.b (1000)	D.med (1000)	D.b (1000 lb)	D.med (1000 lb)	pr.reb	L.b.un (w)
2017	47708	38883	0.46	0.53	242	233	1116	1109	1522	1513	1475	1270	768	658	0	792
2018	48757	38758	0.62	0.72	262	234	1092	1078	1522	1510	2204	1924	1071	899	0	792
2019	49686	38594	0.29	0.32	280	245	400	369	543	504	1328	1096	653	536	0.006	803
2020	52097	41182	0.29	0.32	340	299	420	389	530	493	1809	1524	960	788	0.035	705
2021	53372	42486	0.29	0.32	380	336	501	466	597	560	1937	1625	1053	864	0.09	695
2022	54210	43747	0.29	0.32	410	365	616	577	731	688	1994	1681	1084	892	0.162	735
2023	54740	44617	0.29	0.32	431	387	719	678	874	825	2066	1751	1127	930	0.228	786

Table 3.3. Black Sea Bass projections with F fixed at P*=0.375 starting in 2019 with low recruitment (1991-2016). R = number of age-0 recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (1E10 eggs), L = landings expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension "b" indicates expected values (deterministic) from the base run; the extension "med" indicates median values from the stochastic projections. The last column (extension "un") is from a previous projection analogous to this one but with unadjusted MRIP landings, and it is included here only for comparison to the current projection.

Year	R.b (1000)	R.med (1000)	F.b	F.med	S.b (1E10 eggs)	S.med (1E10 eggs)	L.b (1000)	L.med (1000)	L.b (1000 lb)	L.med (1000 lb)	D.b (1000)	D.med (1000)	D.b (1000 lb)	D.med (1000 lb)	pr.reb	L.b.un (w)
2017	42734	36357	0.46	0.53	252	230	1116	1109	1522	1513	1464	1271	767	658	0.00	792
2018	42734	36245	0.62	0.72	249	222	1091	1078	1522	1510	2151	1905	1063	896	0.00	792
2019	42734	35988	0.26	0.29	269	238	371	342	506	469	1169	962	588	481	0.00	746
2020	42734	36022	0.26	0.29	308	275	389	359	497	463	1506	1293	810	674	0.01	658
2021	42734	36044	0.26	0.29	335	303	457	424	556	521	1571	1368	865	733	0.01	635
2022	42734	36267	0.26	0.29	352	321	548	515	666	628	1576	1387	869	746	0.03	646
2023	42734	36424	0.26	0.29	361	332	622	591	774	737	1577	1388	870	746	0.04	665

Figure 3.1. Comparison of time series estimates for Black Sea Bass from this revised assessment (MRIP revision) and from the previous SEDAR-56 assessment. A) SSB; B) Recruits; C) F; D) SSB/SSB_{MSY}; E) SSB/MSST; and F) F/F_{MSY}.

Figure 3.2. Phase plots of terminal status estimates for Black Sea Bass. The intersection of crosshairs indicates estimates from the base run; lengths of crosshairs defined by 5th and 95th percentiles. Proportion of runs falling in each quadrant indicated. Top panel indicates stock status relative to MSST; bottom panel indicates stock status relative to SSB_{MSY}

4 Blueline Tilefish

As in SEDAR-50, separate analyses were conducted for Blueline Tilefish in the Atlantic south and north of Cape Hatteras. These analyses are described in separate sections below.

4.1 South of Cape Hatteras

4.1.1. Assessment methods

This revised Blueline Tilefish assessment applied methods identical to those of the most recent SEDAR assessment (SEDAR-50 2017) for the Atlantic **south of Cape Hatteras, Assessment Workshop Base Model (AW Base)**. Details can be found in that report, and therefore the methods are only reviewed briefly here. The assessment model was an age-aggregated surplus production model fitted to indices of abundance. It was implemented using A Stock–Production Model Incorporating Covariates (ASPIC 7), including a bootstrap approach to quantify uncertainty and projection methods. The assessment time frame was 1958–2015. During SEDAR 50 the AW Base model was selected by the Assessment Panel and, ultimately, recommended by the Science and Statistical Committee (SSC).

The only difference in input data between this assessment and that of SEDAR-50 was the adjustment to MRIP landings and discards (Section 2). Annual recreational landings estimates were on average about 1.6 times higher than before the adjustment (range: 1.0 to 4.4 times higher), and annual recreational discard estimates were about 1.7 times higher (range: 0.9 to 3.4 times higher).

4.1.2. Assessment results

The model fits to both the handline and longline indices were quite similar to those from SEDAR-50, as were other model diagnostics. The increased MRIP estimates led to small increases in MSY and F_{MSY} (SEDAR 50: MSY = 212,000 lb, F_{MSY} = 0.146; MRIP Revision: MSY =225,000 lb, F_{MSY} = 0.157) and a slight decrease in B_{MSY} (SEDAR 50: B_{MSY} = 1,467,000; MRIP Revision: B_{MSY} = 1,443,000); Table 4.1.1). However, the most substantial effect of the MRIP revised removals occurred in 2013, when estimates were already relatively high.

In SEDAR-50, total recreational landings (889,661 lb) and dead-discards (125,268 lb) made up relatively small percentages of the total removals (12% and 1.7% respectively). However, recreational landings in 2013 were very high (332,130 lb) due to high MRIP landings in the Florida east region. In the current analysis, the MRIP landings adjustment for 2013 was a scaling factor of 1.7. As a result, total removals for 2013 changed from 406,888 to 642,703 lb, having a substantial effect on the assessment.

For most of the time series, annual estimates of biomass (B) and fishing mortality (F) are fairly similar between SEDAR-50 and the current estimates. However, due to increased 2013 removals, the 2013 estimate of F went up considerably compared to SEDAR-50. Estimated biomass in 2014 and 2015 were subsequently lower compared with SEDAR-50, with estimates of B/B_{MSY} <1 (Figure 4.1.1).

As in SEDAR-50, this revised assessment found Blueline Tilefish in the Atlantic **south of Cape Hatteras not** to be overfished, but in considerably poorer status than SEDAR-50. In contrast with SEDAR-50 the revised assessment found the stock to be experiencing overfishing (Table 4.1.1; Fig. 4.1.2). The stock status was estimated to be $B_{2015}/MSST = 1.09$, and the fishing status was estimated to be $F_{2013-}_{2015}/F_{MSY} = 1.44$. These qualitative findings (not overfished, overfishing) were displayed by 41.5% of all bootstrap runs, while another 24.5% of runs were overfished and overfishing (Fig. 4.1.2).

4.1.3. Projections

Two projection scenarios were identified as necessary for management. Using methodology identical to SEDAR-50 (2017), those two scenarios were repeated here:

- Scenario 1: F₂₀₁₆ = F_{current}, F₂₀₁₇₋₂₀₂₀ = F_{P*30%}
- Scenario 2: F₂₀₁₆₋₂₀₁₇ = F_{current}, F₂₀₁₈₋₂₀₂₀ = F_{P*30%}

Results for Scenarios 1 and 2 are provided in Tables 4.1.2 and 4.1.3, respectively.

4.1.4. Discussion and recommendations

In SEDAR-50, the commercial fleet was the dominant source of Blueline Tilefish landings and discards overall, though recreational landings were high in recent years, especially 2013. The fit of the assessment model did not change substantially, but further increases to recent landings had a considerable effect on status indicators. Given that the assessment model appeared robust to the MRIP-adjusted landings and discards, as evidenced by fits to data, the assessment results and corresponding projections appear to be adequate for resource management.

4.2 North of Cape Hatteras

4.2.1. Assessment methods

This revised Blueline Tilefish assessment applied methods identical to those of the most recent SEDAR assessment (SEDAR-50 2017) for the Atlantic **north of Cape Hatteras**. Details can be found in that report, and therefore the methods are only reviewed briefly here. The assessment methods used for this region were several data limited methods (DLM), implemented using the R package DLMtool (Carruthers and Hordyk 2016; R Core Team 2016).

The only difference in input data between this assessment and that of SEDAR-50 was the adjustment to MRIP landings and discards as indicated in section 4.1.1. However minor methodological changes made during webinars with the Mid-Atlantic Blueline Tilefish Working Group were also included in this revision. The time series of landings in the AvC.recent method was extended to include 2002–2015 (Fig. 4.2.1), and the CV of catch (CV_Cat) was based on the CV for that time series.

4.2.2. Assessment results

The TAC distributions of the DLMtool methods were generally similar to SEDAR-50, though they tended to be shifted somewhat higher (Table 4.2.1, Fig 4.2.2). The overall median TAC is 250,000 lb compared with 193,000 lb from SEDAR-50. Most of these methods are dependent upon average or recent catches, which are higher following the MRIP revisions. Following the MRIP revisions, annual removals of Blueline Tilefish north of Cape Hatteras increased from 0-24%. This largest increase was 146,000 lb in 2009. The proportion of total removals among all years attributed to the recreational fleet is now 48% compared with 45% in SEDAR-50.

4.2.3. Projections

No projections were conducted for Blueline Tilefish in the Atlantic north of Cape Hatteras.

4.2.4. Discussion and recommendations

In SEDAR-50, the commercial fleet was the only source of Blueline Tilefish landings and discards historically, though recreational landings have increased substantially in recent years. Some of the DLM tool methods are simply statistical summaries of input data (e.g. AvC, CC1, CC2, AvC.early, AvC.late). There are no available diagnostics associated with any of the methods, for example, for judging quality of fits. Thus, the appropriateness of the results of this analysis compared with SEDAR-50 should be judged based on the quality of the data inputs. The DLMtool methods also do not provide any indications of status. Thus in considering the effects of the MRIP revisions on Blueline Tilefish north of Cape Hatteras, it is worth noting that while the value of MSY south of Cape Hatteras also increased following the MRIP revisions, Blueline Tilefish south of Cape Hatteras were simultaneously estimated to be in much poorer status and to be undergoing overfishing. Given that the updated MRIP landings and discard adjustments were recommended by the data providers, these results appear to be adequate for resource management. Resource managers might consider the effects of the MRIP revisions on Blueline Tilefish south of Cape Hatteras.

4.3. References

Carruthers, T., and A. Hordyk. 2016. DLMtool: Data-Limited Methods Toolkit. URL <u>https://CRAN.R-project.org/package=DLMtool</u>.

R Core Team. 2016. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

SEDAR. 2017. SEDAR 50 – Atlantic Blueline Tilefish Assessment Report. SEDAR, North Charleston SC. 542 pp. available online at: http://sedarweb.org/sedar-50.

Table 4.1.1. Status indicators, benchmarks, and related quantities for Blueline Tilefish from ASPIC, averaged between the handline and longline models for the Atlantic south of Cape Hatteras. Estimates are values from the AW base model, after adjusting recreational landings and discards based on the MRIP revision. Median values and measures of precision (standard errors, SE) are from the bootstrap analysis. The definition of MSST considered in this assessment is MSST=75%B_{MSY}. For comparison, the previous SEDAR-50 estimates are in parentheses.

Quantity	Units	Estimate (Previous)	Median	SE
F _{MSY}	y ⁻¹	0.157 (0.146)	0.163	0.115
85%F _{MSY}	y ⁻¹	0.134 (0.124)	0.138	0.098
75%F _{MSY}	У ⁻¹	0.118 (0.109)	0.122	0.087
65%F _{MSY}	y ⁻¹	0.102 (0.095)	0.106	0.075
B _{MSY}	1000 lb	1443 (1467)	1421	620
MSST	1000 lb	1082 (1100)	1066	465
MSY	1000 lb	225 (212)	231	76
Y at 85%F _{MSY}	1000 lb	220 (NA)	226	75
Y at 75%F _{MSY}	1000 lb	211 (NA)	217	72
Y at 65%F _{MSY}	1000 lb	197 (NA)	203	67
F ₂₀₁₃₋₂₀₁₅ /F _{MSY}	-	1.44 (0.92)	1.30	2.82
B ₂₀₁₅ /MSST	-	1.09 (1.41)	1.27	0.45
B ₂₀₁₅ /B _{MSY}	-	0.82 (1.06)	0.96	0.34

Table 4.1.2. Projection results with fishing mortality fixed at $F = F_{P*30}$ starting in 2017, based on adjusted (A) and unadjusted (B) MRIP landings, for Blueline Tilefish for the Atlantic south of Cape Hatteras. For years prior to 2018, $F = F_{current}$. F = fishing mortality rate (per year), $P(B>B_{MSY}) = proportion of stochastic projection replicates exceeding <math>B_{MSY}$, $P(B>MSST) = proportion of stochastic projection replicates exceeding <math>B_{MSY}$, P(B>MSST) = proportion of stochastic projections, <math>B = deterministic biomass (1000 lbs) estimate, Y = deterministic yield (1000 lbs) estimate, Sum Y = cumulative sum of deterministic yield (1000 lbs). Yield includes landings and dead discards. Note that observed dead discards were 1, 24 and 39% of total removals from 2013 to 2015 respectively in the current projections (A) and were 1, 13, and 40% in the previous projections (B). Previous projections (B) analogous to the current projections but with unadjusted MRIP landings (previously provided to SAFMC staff, Dec 2017) are included here only for comparison to the current projections.

Year	F(per yr)	$P(B > B_{\rm MSY})$	$P(B > \mathrm{MSST})$	$B_{\rm median}$	В	Y	$\operatorname{Sum} Y$
2016	0.226	0.49	0.77	1406	1224	271	271
2017	0.157	0.42	0.72	1333	1173	187	458
2018	0.157	0.42	0.72	1356	1206	192	649
2019	0.157	0.42	0.72	1369	1235	196	846
2020	0.157	0.43	0.72	1374	1262	200	1046
2021		0.44	0.72	1379	1285		

A. Current projections based on adjusted MRIP landings and discards

B. Previous projections based on unadjusted MRIP landings and discards

Year	F(per yr)	$P(B > B_{\rm MSY})$	P(B > MSST)	$B_{ m median}$	В	Y	$\operatorname{Sum} Y$
2016	0.134	0.77	0.95	1702	1606	215	215
2017	0.103	0.76	0.95	1682	1603	167	383
2018	0.103	0.78	0.96	1714	1647	172	554
2019	0.103	0.80	0.96	1739	1685	175	730
2020	0.103	0.81	0.96	1757	1718	178	908
2021		0.82	0.96	1771	1746		

Table 4.1.3. Projection results with fishing mortality fixed at $F = F_{P*30}$ starting in 2018, based on adjusted (A) and unadjusted (B) MRIP landings, for Blueline Tilefish for the Atlantic south of Cape Hatteras. For years prior to 2018, $F = F_{current}$. F = fishing mortality rate (per year), $P(B > B_{MSY}) = proportion of stochastic projection replicates exceeding <math>B_{MSY}$, $P(B > MSST) = proportion of stochastic projection replicates exceeding <math>B_{MSY}$, P(B > MSST) = proportion of stochastic projections, B = deterministic biomass (1000 lbs) estimate, Y = deterministic yield (1000 lbs) estimate, Sum Y = cumulative sum of deterministic yield (1000 lbs). Yield includes landings and dead discards. Note that observed dead discards were 1, 24 and 39% of total removals from 2013 to 2015 respectively in the current projections (A) and were 1, 13, and 40% in the previous projections (B). Previous projections (B) analogous to the current projections but with unadjusted MRIP landings (previously provided to SAFMC staff, Dec 2017) are included here only for comparison to the current projections.

Year	F(per yr)	$P(B > B_{\rm MSY})$	P(B > MSST)	$B_{\rm median}$	B	Y	$\operatorname{Sum}Y$
2016	0.226	0.49	0.77	1406	1224	271	271
2017	0.226	0.42	0.72	1333	1173	260	531
2018	0.157	0.37	0.66	1273	1130	180	712
2019	0.157	0.38	0.66	1296	1167	186	898
2020	0.157	0.39	0.66	1310	1200	191	1088
2021		0.40	0.66	1322	1230		

A. Current projections based on adjusted MRIP landings and discards

B. Previous projections based on unadjusted MRIP landings and discards

Year	F(per yr)	$P(B > B_{\rm MSY})$	$P(B > \mathrm{MSST})$	$B_{ m median}$	В	Y	$\operatorname{Sum} Y$
2016	0.134	0.77	0.95	1702	1606	215	215
2017	0.134	0.76	0.95	1682	1603	215	430
2018	0.103	0.74	0.95	1668	1600	167	597
2019	0.103	0.76	0.96	1705	1644	171	769
2020	0.103	0.78	0.96	1733	1683	175	944
2021		0.80	0.96	1750	1716		

Quantile	AvC	CC1	CC4	Fdem.ML	SPMSY	YPR.ML	AvC.early	AvC.late	TOTAL
2.50%	119	230	156	58	11	80	27	279	31 (30)
5%	128	250	170	77	18	100	29	299	35 (40)
10%	136	270	188	112	32	139	30	319	43 (49)
25%	156	317	219	201	64	225	34	360	142 (103)
50%	179	372	259	395	120	428	40	409	250 (193)
75%	204	443	312	929	183	897	45	468	401 (413)
90%	229	507	361	2011	239	2198	51	537	600 (619)
95%	246	566	404	3060	266	3451	55	588	1105 (998)
97.50%	264	616	439	5348	283	5654	57	613	2077 (1854)

Table 4.2.1. TAC quantiles for all DLM methods for Blueline Tilefish for the Atlantic north of Cape Hatteras (1000 lb). For comparison, the previous SEDAR-50 estimates are in parentheses in the TOTAL column.

Figure 4.1.1. Comparison of time series estimates for Blueline Tilefish for the Atlantic south of Cape Hatteras, from this revised assessment (MRIP revision) and from the previous SEDAR-50 assessment. A) B; B) blank panel; C) F; D) B/B_{MSY}; E) B/MSST; and F) F/F_{MSY}.

Figure 4.1.2. Phase plots of terminal status estimates for Blueline Tilefish for the Atlantic south of Cape Hatteras. The intersection of crosshairs indicates estimates from the ASPIC AW base run (average of handline and longline models); lengths of crosshairs defined by 5th and 95th percentiles. Percent of runs falling into each quadrant indicated. Top panel indicates stock status relative to MSST; bottom panel indicates stock status relative to B_{MSY}

Figure 4.2.1. Catch series used in DLM analysis, for Blueline Tilefish for the Atlantic north of Cape Hatteras. Here the AvC method was applied to three different time periods: the time since the fishery in this area effectively began (AvC, 1978-2015); the early part of this time series before the spatial shift in effort (AvC.early, 1978-2001), and during the more recent period after the increase in landings (AvC.late, 2002-2015).

Year

Figure 4.2.2. Distributions of TACs for DLM analysis, for Blueline Tilefish for the Atlantic north of Cape Hatteras. Here the AvC method was applied to three different time periods: the time since the fishery in this area effectively began (AvC, 1978-2015); the early part of this time series before the spatial shift in effort (AvC.early, 1978-2001), and during the more recent period after the increase in landings (AvC.late, 2002-2015).

All methods

5 Red Grouper

5.1. Assessment methods

This revised Red Grouper assessment applied methods identical to those of the most recent SEDAR assessment (SEDAR-53 2017). Details can be found in that report, and therefore the methods are only reviewed briefly here. The assessment model was an integrated age-structured model fitted to data on landings and discards, indices of abundance, and age or length compositions. It was implemented using the Beaufort Assessment Model (BAM), including the Monte Carlo/Bootstrap (MCB) approach to quantify uncertainty. The assessment time frame was 1976–2015.

The only difference in input data between this assessment and that of SEDAR-53 was the adjustment to MRIP landings and discards (Section 2). Annual recreational landings estimates were on average about 2 times higher than before the adjustment (range: 1.2 to 3.3 times higher), and annual recreational discard estimates about 2.5 times higher (range: 1.0 to 7.1 times higher).

5.2. Assessment results

The model fits to all data sources were quite similar to those from SEDAR-53, as were other model diagnostics. The primary effect of increased MRIP estimates was that the assessment model required more fish to match the larger level of landings and discards. In effect, the perceived scale of abundance is larger, which the assessment model accomplished by increasing the estimate of unfished age-1 recruitment, R_0 . The SEDAR-53 estimate was $\widehat{R_0} = 359,749$ fish, whereas the revised estimate is $\widehat{R_0} = 614,798$ fish, which is about 1.7 times higher. This translates into higher levels of SSB and recruits (Fig. 5.1). However, the estimate of SSB_{MSY} (Table 5.1) increased by about the same ratio (1.7), so the relative status time series (SSB/SSB_{MSY} and SSB/MSST) changed little with this revision (Fig. 5.1). Similarly, the estimated time series of fishing mortality rate changed little (Fig. 5.1), because the model predicted more fish available to support the increased level of removals. The exception to this was in the terminal years of the assessment, where the revision estimated higher levels of fishing than were previously predicted. This occurred because the MRIP-adjusted removals during the last several years of the assessment period were all above average, including landings and discard adjustments that were 1-2 standard deviations above normal. The higher values of F/F_{MSY} near the end of the assessment period led to increased certainty about the overfishing status (Fig. 5.2).

As in SEDAR-53, this revised assessment found South Atlantic Red Grouper to be overfished and experiencing overfishing (Table 5.1; Fig. 5.2). The stock status was estimated to be $SSB_{2015}/MSST=0.25$, and the fishing status was estimated to be $F_{2013-2015}/F_{MSY}=3.43$. These qualitative findings (overfished, overfishing) were displayed by all MCB runs, indicating high certainty in the results (Fig. 5.2).

5.3. Projections

Three projection scenarios were identified as necessary for management. Using methodology identical to SEDAR-53 (2017), those three scenarios were repeated here:

- Scenario 1: F=F_{MSY} with low recruitment
- Scenario 2: F=75%F_{MSY} with low recruitment
- Scenario 3: F=75%F_{MSY} (i.e., F_{REBUILD}) with long-term expected recruitment, extended until SSB reaches SSB_{MSY} with probability of 0.5

Scenario 1 was included for quantifying OFL, Scenario 2 was included for quantifying ABC, and Scenario 3 was included for (re)defining the rebuilding time frame.

Results for Scenario 1, 2, and 3 are provided in Tables 5.2, 5.3, and 5.4, respectively.

5.4. Discussion and recommendations

In SEDAR-53, the general recreational fleet was the dominant source of Red Grouper landings and discards, and thus it is not surprising that assessment results are somewhat sensitive to those inputs, particularly the perceived scale of absolute abundance estimated by the assessment. Given that the assessment model appeared robust to the MRIP-adjusted landings and discards, as evidenced by fits to data and standard model diagnostics, the assessment results and corresponding projections appear to be adequate for resource management.

5.5. References

SEDAR-53. 2017. SEDAR 53 – South Atlantic Red Grouper Assessment Report. SEDAR. North Charleston SC. Available online at: http://sedarweb.org/sedar-53.

Table 5.1. Status indicators, benchmarks, and related quantities for Red Grouper. Estimates are values from the base run of the assessment model, after adjusting for MRIP revisions to estimates of recreational landings and discards. Median values and measures of precision (standard errors, SE) are from the Monte Carlo/Bootstrap analysis. Spawning stock biomass (SSB) is measured as total (males and females) mature biomass. The definition of MSST considered in this assessment is MSST=75%SSB_{MSY}. For comparison, the previous SEDAR-53 estimates are in parentheses.

Quantity	Units	Estimate (Previous)	Median	SE
F _{MSY}	y ⁻¹	0.12 (0.12)	0.12	0.02
85%F _{MSY}	У ⁻¹	0.10 (0.10)	0.10	0.01
75%F _{MSY}	У ⁻¹	0.09 (0.09)	0.09	0.01
65%F _{MSY}	У ⁻¹	0.07 (0.08)	0.08	0.01
F _{20%}	У ⁻¹	0.19 (0.20)	0.20	0.02
F _{30%}	У ⁻¹	0.13 (0.14)	0.14	0.02
F _{40%}	У ⁻¹	0.09 (0.10)	0.10	0.01
B _{MSY}	mt	7271.2 (4188.3)	7267.3	2856.2
SSB _{MSY}	mt	5558.9 (3183.4)	5533.4	2456.5
MSST	mt	4169.2 (2387.6)	4150.0	1842.4
MSY	1000 lb	1303.6 (794.3)	1322.9	374.3
D _{MSY}	1000 fish	114.1 (60.9)	117.6	28.2
R _{MSY}	1000 age-1 fish	689.9 (399.9)	721.3	149.9
Y at 85%F _{MSY}	1000 lb	1291.0 (787.0)	1311.4	370.0
Y at 75%F _{MSY}	1000 lb	1265.7 (772.0)	1286.7	361.7
Y at 65%F _{MSY}	1000 lb	1222.9 (764.4)	1243.7	347.9
D at 85%F _{MSY}	1000 fish	100.0 (NA)	102.9	25.1
D at 75%F _{MSY}	1000 fish	90.1 (NA)	92.5	22.9
D at 65%F _{MSY}	1000 fish	79.6 (NA)	81.9	20.5
F ₂₀₁₃₋₂₀₁₅ /F _{MSY}	-	3.43 (1.54)	3.27	1.08
SSB ₂₀₁₅ /MSST	-	0.25 (0.38)	0.25	0.13
SSB ₂₀₁₅ /SSB _{MSY}	-	0.19 (0.29)	0.19	0.09

Table 5.2. Red Grouper projections with $F=F_{MSY}$ starting in 2018 and low recruitment. R = number of age-1 recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (mt), L = landings expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension "b" indicates expected values (deterministic) from the base run; the extension "med" indicates median values from the stochastic projections. The last column (extension "un") is from a previous projection analogous to this one but with unadjusted MRIP landings, and it is included here only for comparison to the current projection.

Year	R.b	R.med	F.b	F.med	S.b(mt)	S.med(mt)	L.b(n)	L.med(n)	L.b(w)	L.med(w)	D.b(n)	D.med(n)	D.b(w)	D.med(w)	pr.reb	L.b.un(w)
2016	245	209	0.61	0.65	740	735	77	78	841	847	140	128	248	246	0	365
2017	245	208	1.22	1.31	407	402	82	81	841	837	222	188	392	334	0	365
2018	245	208	0.12	0.12	228	224	5	5	49	48	26	23	41	36	0	188
2019	245	208	0.12	0.12	313	305	7	7	61	60	36	32	67	60	0	196
2020	245	207	0.12	0.12	443	432	13	12	91	88	40	36	84	77	0	207
2021	245	207	0.12	0.12	609	600	19	19	136	134	40	36	88	80	0	219
2022	245	210	0.12	0.12	790	780	24	24	183	182	41	37	88	81	0	230
2023	245	208	0.12	0.12	970	959	28	28	227	226	41	37	88	81	0	239
2024	245	208	0.12	0.12	1135	1117	31	31	266	266	/1	37	88	81	0	248
2024	245	200	0.12	0.12	1280	1256	3/	33	300	300	/1	37	88	81	0	255
2025	245	207	0.12	0.12	1406	1230	26	25	220	300	41	37	00	01	0	255
2026	245	210	0.12	0.12	1406	13//	30	35	330	328	41	57	00	81	0	201
2027	245	210	0.12	0.12	1512	1479	37	36	355	353	41	37	88	81	0	266
2028	245	210	0.12	0.12	1600	1565	38	38	375	372	41	37	88	81	0	270
2029	245	208	0.12	0.12	1673	1636	39	38	392	388	41	37	88	81	0	273
2030	245	210	0.12	0.12	1733	1695	40	39	406	403	41	37	88	81	0	276

Table 5.3. Red Grouper projections with F=75% F_{MSY} starting in 2018 and low recruitment. R = number of age-1 recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (mt), L = landings expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension "b" indicates expected values (deterministic) from the base run; the extension "med" indicates median values from the stochastic projections. The last column (extension "un") is from a previous projection analogous to this one but with unadjusted MRIP landings, and it is included here only for comparison to the current projection.

Year	R.b	R.med	F.b	F.med	S.b(mt)	S.med(mt)	L.b(n)	L.med(n)	L.b(w)	L.med(w)	D.b(n)	D.med(n)	D.b(w)	D.med(w)	pr.reb	L.b.un(w)
2016	245	209	0.61	0.65	740	735	77	78	841	847	140	128	248	246	0	365
2017	245	208	1.22	1.31	407	402	82	81	841	837	222	188	392	334	0	365
2018	245	208	0.09	0.09	230	226	4	4	37	37	20	17	31	27	0	143
2019	245	208	0.09	0.09	324	317	6	6	48	47	28	25	52	46	0	154
2020	245	207	0.09	0.09	470	459	10	10	73	71	31	28	66	60	0	167
2021	245	207	0.09	0.09	658	650	16	15	112	110	31	28	69	62	0	181
2022	245	210	0.09	0.09	870	862	20	20	152	152	31	28	69	63	0	194
2023	245	208	0.09	0.09	1084	1073	24	23	192	192	31	28	69	63	0	206
2024	245	208	0.09	0.09	1286	1270	26	26	228	229	31	28	69	63	0	217
2025	245	207	0.09	0.09	1470	1444	29	28	261	261	31	28	69	63	0	226
2026	245	210	0.09	0.09	1632	1603	30	30	290	289	31	28	69	63	0	234
2027	245	210	0.09	0.09	1773	1737	32	32	315	314	31	28	69	63	0	240
2028	245	210	0.09	0.09	1894	1855	33	33	336	334	31	29	69	64	0	246
2029	245	208	0.09	0.09	1996	1955	34	34	354	352	31	29	69	64	0	251
2030	245	210	0.09	0.09	2083	2040	35	34	369	367	31	28	69	64	0	255

Table 5.4. Red Grouper projections with F=75% F _{MSY} (i.e., F _{REBUILD}) starting in 2018 and long-term expected recruitment. R = number of age-1
recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (mt), L = landings expressed in numbers (n, in 1000s) or whole weight
(w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic
projection replicates with SSB ≥ SSB _{MSY} . The extension "b" indicates expected values (deterministic) from the base run; the extension "med"
indicates median values from the stochastic projections.

Year	R.b	R.med	F.b	F.med	S.b(mt)	S.med(mt)	L.b(n)	L.med(n)	L.b(w)	L.med(w)	D.b(n)	D.med(n)	D.b(w)	D.med(w)	pr.reb
2016	489	407	0.61	0.65	740	735	78	78	841	847	222	191	332	309	0
2017	428	346	1.21	1.27	439	432	83	82	841	837	388	305	655	522	0
2018	329	226	0.09	0.09	281	275	5	5	42	41	30	23	50	41	0
2019	250	172	0.09	0.09	431	418	9	8	63	60	34	26	70	55	0
2020	326	215	0.09	0.09	626	609	15	14	103	98	38	28	80	62	0
2021	397	252	0.09	0.09	872	843	21	19	150	144	44	32	89	68	0.001
2022	459	287	0.09	0.09	1160	1107	26	24	199	191	52	38	106	79	0.004
2023	509	309	0.09	0.09	1487	1410	32	29	255	244	60	42	124	90	0.01
2024	549	338	0.09	0.09	1850	1735	39	36	320	305	66	46	139	99	0.022
2025	581	353	0.09	0.09	2241	2076	46	42	390	368	71	49	151	107	0.04
2026	606	366	0.09	0.09	2652	2419	53	48	464	434	75	51	161	113	0.065
2027	626	382	0.09	0.09	3068	2753	60	54	539	500	78	54	168	119	0.095
2028	641	395	0.09	0.09	3479	3078	66	59	613	565	80	56	174	123	0.13
2029	653	399	0.09	0.09	3875	3376	72	64	684	627	82	57	179	127	0.17
2030	663	406	0.09	0.09	4250	3658	77	69	751	686	84	58	183	129	0.212
2031	671	415	0.09	0.09	4598	3905	82	73	813	739	85	59	186	132	0.255
2032	677	426	0.09	0.09	4917	4124	86	75	870	785	86	60	188	134	0.296
2033	682	426	0.09	0.09	5205	4321	89	78	922	826	87	61	190	137	0.332
2034	686	430	0.09	0.09	5463	4499	92	81	967	862	87	62	192	138	0.368
2035	689	434	0.09	0.09	5692	4654	95	83	1008	895	88	62	193	139	0.403
2036	691	435	0.09	0.09	5894	4789	97	85	1044	922	88	63	194	141	0.436
2037	694	439	0.09	0.09	6071	4922	99	87	1075	948	88	64	195	143	0.466
2038	695	438	0.09	0.09	6225	5031	101	89	1103	971	89	64	195	144	0.492
2039	697	446	0.09	0.09	6359	5118	102	90	1126	992	89	64	196	143	0.515

Figure 5.1. Comparison of time series estimates for Red Grouper from this revised assessment (MRIP revision) and from the previous SEDAR-53 assessment. A) SSB; B) Recruits; C) F; D) SSB/SSB_{MSY}; E) SSB/MSST; and F) F/F_{MSY} .

Figure 5.2. Phase plots of terminal status estimates for red grouper. The intersection of crosshairs indicates estimates from the base run; lengths of crosshairs defined by 5th and 95th percentiles. Proportion of runs falling in each quadrant indicated. Top panel indicates stock status relative to MSST; bottom panel indicates stock status relative to SSB_{MSY}

6 Vermilion Snapper

6.1. Assessment methods

This revised Vermilion Snapper assessment applied methods identical to those of the most recent SEDAR assessment (SEDAR-55 2018). Details can be found in that report, and therefore the methods are only reviewed briefly here. The assessment model was an integrated age-structured model fitted to data on landings and discards, indices of abundance, and age or length compositions. It was implemented using the Beaufort Assessment Model (BAM), including the Monte Carlo/Bootstrap (MCB) approach to quantify uncertainty. The assessment time frame was 1947–2016.

The only difference in input data between this assessment and that of SEDAR-55 was the adjustment to MRIP landings and discards (Section 2). Annual recreational landings estimates were on average about 1.6 times higher than before the adjustment (range: 1.0 to 2.8 times higher), and annual recreational discard estimates about 1.8 times higher (range: 1.0 to 3.5 times higher).

6.2. Assessment results

The model fits to all data sources were similar to those from SEDAR-55, as were other model diagnostics. The primary effect of increased MRIP estimates was that the assessment model required more fish to match the larger level of landings and discards. In effect, the perceived scale of abundance is larger, which the assessment model accomplished by increasing the estimate of unfished age-1 recruitment, R_0 , and the range of annual recruitment deviations (rec sigma). This translated into higher levels of SSB and recruits (Fig. 6.1). The estimate of SSB_{MSY} (Table 6.1) increased slightly and the relative status time series (SSB/SSB_{MSY} and SSB/MSST) decreased with this revision, but the biomass stock status did not change (Fig. 6.1). Similarly, the estimated time series of fishing mortality rate increased slightly (Fig. 6.1), because the model predicted more fish available to support the increased level of removals. The exception to this was in the terminal years of the assessment, where the revision estimated higher levels of fishing than were previously predicted. This occurred because the MRIP-adjusted removals during the last several years of the assessment period were all above average, including landings and discard adjustments that were 1-2 standard deviations above normal. F/F_{MSY} suggested the stock was undergoing overfishing in the terminal year of the assessment (1.03), but not when averaged over the last three assessment years (0.85) (Fig. 6.2).

As in SEDAR-55, this revised assessment found South Atlantic Vermilion Snapper not to be overfished and not experiencing overfishing (Table 6.1; Fig. 6.2). The stock status was estimated to be $SSB_{2016}/MSST=1.38$, and the fishing status was estimated to e $F_{2014-2016}/F_{MSY}=0.85$. These qualitative findings (not overfished, not overfishing) were displayed by the majority of MCB runs, indicating reasonable certainty in the results (Fig. 6.2).

6.3. Projections

Two projection scenarios were identified as necessary for management. Using methodology identical to SEDAR-55 (2018), those three scenarios were repeated here:

- Scenario 1: F=F_{MSY}
- Scenario 2:P*=0.4

Scenario 1 was included for quantifying OFL and Scenario 2 was included for quantifying ABC.

Results for Scenario 1 and 2 are provided in Tables 6.2 and 6.3, respectively.

6.4. Discussion and recommendations

In SEDAR-55, the general recreational fleet was the dominant source of Vermilion Snapper landings and discards, and thus it is not surprising that assessment results are somewhat sensitive to those inputs, particularly the perceived scale of absolute abundance estimated by the assessment. Given that the assessment model appeared robust to the MRIP-adjusted landings and discards, as evidenced by fits to data and standard model diagnostics, the assessment results and corresponding projections appear to be adequate for resource management.

6.5. References

SEDAR-55. 2018. SEDAR 55 – South Atlantic Vermilion Snapper Assessment Report. SEDAR. North Charleston SC. Available online at: http://sedarweb.org/sedar-55.

Table 6.1. Status indicators, benchmarks, and related quantities for Vermilion Snapper. Estimates are values from the base run of the assessment model, after adjusting for MRIP revisions to estimates of recreational landings and discards. Median values and measures of precision (standard errors, SE) are from the Monte Carlo/Bootstrap analysis. Reproductive potential is measured as population fecundity. The definition of MSST considered in this assessment is MSST=75%SSB_{MSY}. For comparison, the previous SEDAR-55 estimates are in parentheses.

Quantity	Units	Estimate (Previous)	Median	SE
F _{MSY}	У ⁻¹	0.35 (0.41)	0.42	0.19
85%F _{MSY}	У ⁻¹	0.30 (0.35)	0.35	0.16
75%F _{MSY}	У ⁻¹	0.26 (0.31)	0.31	0.14
65%F _{MSY}	У ⁻¹	0.23 (0.27)	0.27	0.12
B _{MSY}	mt	4743.1 (4249.2)	4370.1	579.1
SSB _{MSY}	1E12 eggs	20.5 (18.3)	18.7	2.68
MSST	1E12 eggs	15.3 (13.7)	14.0	2.01
MSY	1000 lb	1298.7 (1305.8)	1388.2	137.5
D _{MSY}	1000 fish	267.1 (245.9)	172.4	77.1
R _{MSY}	1000 age-1 fish	6072 (5591)	5698	1091
Y at 85%F _{MSY}	1000 lb	1292.1 (1300.3)	1383.1	142.4
Y at 75%F _{MSY}	1000 lb	1277.9 (1288.2)	1370.6	147.7
Y at 65%F _{MSY}	1000 lb	1252.1 (1266.0)	1347.8	147.7
F ₂₀₁₄₋₂₀₁₆ /F _{MSY}	-	0.846 (0.609)	0.677	0.49
SSB ₂₀₁₆ /MSST	-	1.38 (1.51)	1.50	0.33
SSB ₂₀₁₆ /SSB _{MSY}	_	1.03 (1.13)	1.13	0.25

Table 6.2. Vermilion Snapper projections with $F=F_{MSY}$ starting in 2019 and low recruitment. R = number of age-1 recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (1*E*12 eggs), L = landings expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension "b" indicates expected values (deterministic) from the base run; the extension "med" indicates median values from the stochastic projections. The last column (extension "un") is from a previous projection analogous to this one but with unadjusted MRIP landings, and it is included here only for comparison to the current projection.

Year	R.b	R.med	F.b	F.med	S.b(eggs)	S.med(eggs)	L.b(n)	L.med(n)	L.b	L.med(w)	D.b(n)	D.med(n)	D.b(w)	D.med(w)	pr.reb	L.b.un(w)
2017	6118	5480	0.38	0.32	21	21	1446	1384	1479	1477	392	403	271	286	0.688	1220
2018	6080	5480	0.4	0.34	20	20	1502	1447	1479	1477	423	423	289	294	0.658	1220
2019	6051	5443	0.35	0.42	20	20	1323	1727	1265	1706	383	414	260	286	0.626	1669
2020	6046	5446	0.35	0.42	20	19	1353	1640	1273	1574	387	410	264	280	0.559	1538
2021	6054	5424	0.35	0.42	20	18	1367	1585	1279	1482	387	408	265	278	0.5	1459
2022	6059	5427	0.35	0.42	20	18	1373	1550	1283	1427	388	406	265	277	0.468	1411
2023	6062	5401	0.35	0.42	20	18	1376	1533	1286	1395	388	405	266	276	0.453	1380

Table 6.3. Vermilion Snapper projections with fishing mortality rate fixed at P*=0.4 starting in 2019. R = number of age-1 recruits (in 1000s), F = fishing mortality rate (per year), S = spawning stock (1*E*12 eggs), L = landings expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), D = dead discards expressed in numbers (n, in 1000s) or whole weight (w, in 1000 lb), and pr.reb = proportion of stochastic projection replicates with SSB \geq SSB_{MSY}. The extension "b" indicates expected values (deterministic) from the base run; the extension "med" indicates median values from the stochastic projections. The last column (extension "un") is from a previous projection analogous to this one but with unadjusted MRIP landings, and it is included here only for comparison to the current projection.

Year	R.b	R.med	F.b	F.med	S.b(eggs)	S.med(eggs)	L.b(n)	L.med(n)	L.b	L.med(w)	D.b(n)	D.med(n)	D.b(w)	D.med(w)	pr.reb	L.b.un(w)
2017	6118	5480	0.38	0.32	21	21	1446	1384	1479	1477	392	403	271	286	0.688	1220
2018	6080	5480	0.4	0.34	20	20	1502	1447	1479	1477	423	423	289	294	0.658	1220
2019	6051	5443	0.3	0.36	20	20	1152	1509	1102	1492	331	422	226	291	0.648	1454
2020	6066	5465	0.3	0.36	21	20	1217	1488	1152	1439	339	422	232	290	0.637	1400
2021	6100	5470	0.3	0.36	21	19	1254	1470	1187	1398	342	423	236	291	0.619	1366
2022	6123	5490	0.3	0.36	21	19	1275	1458	1212	1372	344	423	238	291	0.614	1346
2023	6140	5476	0.3	0.36	22	19	1290	1453	1230	1355	346	423	240	292	0.61	1333

Figure 6.1. Comparison of time series estimates for Vermilion Snapper from this revised assessment (MRIP revision) and from the previous SEDAR-55 assessment. A) SSB; B) Recruits; C) F; D) SSB/SSB_{MSY}; E) SSB/MSST; and F) F/F_{MSY}.

Figure 6.2. Phase plots of terminal status estimates for Vermilion Snapper. The intersection of crosshairs indicates estimates from the base run; lengths of crosshairs defined by 5th and 95th percentiles. Proportion of runs falling in each quadrant indicated. Top panel indicates stock status relative to MSST; bottom panel indicates stock status relative to SSB_{MSY}

