# Projections and Associated Analyses for South Atlantic Blueline Tilefish SEDAR 32 Stock Assessment

Sustainable Fisheries Branch, National Marine Fisheries Service, Southeast Fisheries Science Center, 101 Pivers Island Rd, Beaufort, NC 28516 November 25, 2013

### Introduction

This document responds to requests for revised stochastic projections, P\* projections, and related information from the SEDAR 32 South Atlantic blueline tilefish stock assessment following the October 2013 meeting of the SSC.

## Stochastic Projections

Four constant F projection scenarios were provided in the SEDAR 32 blueline tilefish assessment report: 1. F=0

- 2. F=F<sub>rebuild</sub> (F at which 50% of projection replicates achieve stock recovery in 10 yrs (i.e.,  $SSB_{2023} \ge SSB_{msy}$ )
- 3. F=F<sub>msv</sub>
- 4. F=F<sub>current</sub> (geometric mean F from 2009-2011)

In the original report, each scenario was run as a 5-year projection (2012-2016) with 2012 as an interim year, and management first applied in 2013. These projections only included data through 2011 and F in 2012 was taken as the geometric mean F from 2009-2011. Details of the projection methodology and results can be found in the SEDAR 32 blueline tilefish assessment report (SEDAR 2013).

At the SEDAR 32 review workshop (RW) it was noted that blueline landings in 2011 were unusally low compared to 2009 and 2010. This was attributed to a deepwater closure that was only in effect for 2011. As a result, the convention of using the geometric mean of the fishing mortality over the terminal three years of the assessment (2009-2011) for projections was questioned. A request was made at the RW to update the projections using actual 2012 landings data. The 2012 landings were similar in magnitude to those in 2009 and 2010 (and higher than 2011), supporting the conclusion that the low 2011 landings were a result of the temporary management regulation.

All projections were re-done including 2012 landings data. 2012-2014 were considered interim years and management was first applied in 2015 as described in the blueline tilefish management overview. The terminal year of the projections was 2023. The original four projection scenarios described above were re-run including these changes. An additional request was made for a rebuilding projection at 72.5% probability of successful rebuilding at F<sub>rebuild</sub>. Hence, a fifth projection was run in an identical manner to those described above:

5. F=F<sub>rebuild</sub> (F at which 72.5% of projection replicates achieve stock recovery in 10 yrs (i.e.,  $SSB_{2023} \ge SSB_{msy}$ )

Total blueline removals in 2012 were constructed from commercial (handline, longline, other gear) and recreational (headboat, MRIP) landings and discard estimates (Table 1). Landings were provided in pounds whole weight. Discards were converted from numbers to pounds whole weight assuming a mean weight of 5.06 pounds. A 1-yr projection was run with the 2012 landings data to generate a value for fishing mortality (F) in 2012 given the 2012 landings. The geometric mean fishing mortality over

2009, 2010, and 2012 (excluding 2011) was then used as current F for the interim years in the constant F projection scenarios described below.

In the SEDAR 32 blueline assessment, discards were not modeled separate from landings. This was due to the small amount of dead discards relative to landings and the lack of size or age information of discards needed to estimate discard selectivity. This decision was approved by the assessment panel during the assessment workshop and subsequent webinars. Because there were not separate discard and landings data streams in the assessment model, separate fishing mortality rates (Fs) were not estimated for landings and discards and, hence, all projected ABCs reflect combined landings and discards.

To separate the combined ABCs into those for landings and discards a posthoc analysis was conducted using the ratio of dead discards to landings available in the data. Recreational landings and discards were available from 1981 – 2011. Commercial discards were available from 1993 – 2011. Discard mortality was assumed to be 100% as recommended by the SEDAR 32 DW. Dead discards represented on average 0.0108% of total removals (landings + dead discards). Projected ABCs were partitioned between landings and discards using this ratio.

Results of the 5 projection scenarios are shown in Table 2-6 and Fig. 1-5.

### P\* Analysis

Acceptable biological catch (ABC) was computed using the sequential PASCL approach of Shertzer et al. (2010), a refinement of the probability-based approach described in Shertzer et al. (2008). This approach solves for annual levels of projected landings that are consistent with a preset acceptable probability of overfishing (P\*) in any year of the projection time period. The method considers uncertainty in  $F_{MSY}$  as characterized by the MCB analysis described in the SEDAR 32 South Atlantic blueline tilefish stock assessment report (SEDAR 2013). No implementation uncertainty is included so that annual catch targets are considered to be centered on the ABC. Two 5-yr projections were run with P\* = 0.5 and P\* = 0.3. These values were recommended by the SSC following review of the assessment.

Projections were run for the six years following the terminal year of the assessment (2012-2017). The structure of the projection model is described in SEDAR (2013). The first year of new management is assumed to be 2015. Point estimates of initial abundance at age in the projection (start of 2012), other than at age 1, were taken to be the 2011 estimates from the assessment, discounted by 2011 natural and fishing mortalities. The initial abundance at age 1 was computed using the estimated spawner-recruit model and a 2011 estimate of SSB. In the assessment, the terminal two years of recruitment did not deviate from the spawner-recruit curve, which influenced the abundances of ages 1-2 ( $N_{1-2}$ ) in 2011. In the projections, lognormal stochasticity was applied to these abundances based on recruitment variation ( $\sigma_R$ ). Thus, the initial abundance in year one (2012) of the projections included this variability in  $N_{2-3}$ , as well as in the SSB<sub>2011</sub> used to compute initial recruits,  $N_1$ . Because the assessment ended in 2011, the projections required an initialization period (2012). As for the stochastic projections described above, the fully selected fishing mortality rate during the initialization period was taken to be the

geometric mean of fully selected F for 2009, 2010, and 2012. Any changes in fishing effort were assumed to begin in 2015.

To characterize uncertainty in future stock dynamics, stochasticity was included in replicate projections, each an extension of a single MCB assessment model fit. Thus, projections carried forward uncertainties in natural mortality and steepness, as well as in estimated quantities such as spawner-recruit parameters, selectivity curves, and in initial (2012) abundance at age. Initial and subsequent recruitment values were generated with stochasticity using a Monte Carlo procedure, in which the estimated Beverton-Holt model of each MCB fit was used to compute mean annual recruitment values. Variability was added to the mean values by choosing multiplicative deviations at random from the recruitment deviations estimated for that chosen MCB run.

The procedure generated 10,000 replicate projections of MCB model fits drawn at random (with replacement) from the MCB runs. In cases where the same MCB run was drawn, projections would still differ as a result of stochasticity in projected recruitment streams. Precision of projections was represented graphically by the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the replicate projections.

Annual ABC (landings plus discard mortalities in 1000 lb whole weight and 1000s fish) was computed for the years 2013-2017. In general, ABC increased with a higher acceptable probability of overfishing (P\*) while spawning stock biomass decreased. Because implementation uncertainty was considered zero, these ABC values should be considered possible catch limits. Implementation uncertainty could be included in which case these values would be adjusted downward in setting annual catch targets (ACTs).

The projection method applied here assumed the catch taken from the stock was the annual ABC. If the projection had applied a catch level lower than the ABC, say at ACT < ABC, then the corresponding reduction in applied F would have resulted in higher stock sizes, and higher ABCs in subsequent years.

Results of P\* analysis (in weight and numbers) are shown in Table 7-10 and Fig. 6-7.

#### Comments on Projections:

- Both stochastic projections and P\* analysis show a predicted spike in fishing mortality in 2014. The assumed F during the interim years (2012-2014) prior to management in 2015 is about three times F<sub>msy</sub>. This high F drives down the predicted spawning biomass. In addition, the large recruitments in the early to mid-2000's predicted by the assessment model have pass through the fishery by 2013. The combination of low spawning biomass and a more typical (rather than elevated) recruitment pattern likely account for this spike in fishing mortality.
- In general, projections of fish stocks are highly uncertain, particularly in the long-term (> 3-5 years).
- Although these projections included many sources of uncertainty, they did not include structural (model) uncertainty. That is, projection results are conditional on one set of functional forms used to describe population dynamics, selectivity, recruitment, etc.

- Fisheries were assumed to continue fishing at their estimated current proportions of total
  fishing effort, using the estimated current selectivity patterns. New management regulations
  that alter those proportions or selectivities would likely affect projection results.
- These projections did not consider any error in implementing regulations (e.g., landings in excess of the ABC). If implementation error were included the projections would be altered.
- The projections assume that the estimated spawner-recruit relationship applies in the future
  and that past residuals reflect future uncertainty in recruitment. If future recruitment changes,
  due to environment or harvest effects, then stock trajectories will be altered.

## References

SEDAR, 2013. SEDAR 32 Stock Assessment Report for South Atlantic Blueline Tilefish.

Shertzer, K.W., M.H. Prager, and E.H. Williams. 008. A probability-based approach to setting annual catch levels. Fishery Bulletin 106:225-232.

Shertzer, K.W., M.H. Prager, and E.H. Williams. 2010. Probabilistic approaches to setting acceptable biological catch and annual catch targets for multiple years: Reconciling methodology with National Standards Guidelines. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 2:451-458.

Table 1. 2012 landings and discard removals (pounds whole weight) of South Atlantic blueline tilefish.

| Fishery               | Removals |
|-----------------------|----------|
| Com Handline landings | 32,726   |
| Com Longline landings | 309,320  |
| Com 'Other' landings  | 25,197   |
| Com Discards          | 197      |
| MRIP landings         | 91,421   |
| MRIP discards         | 7,458    |
| Headboat landings     | 18,462   |
| Headboat discards     | 86       |
| Total:                | 484,867  |
|                       |          |

Table 2. Scenario 1: F=0. Acceptable biological catch (ABC) in units of 1000 lb whole weight and 1000s fish. F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of SSB_{MSY} = 246.6 mt, R = recruits (1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.$ 

| Year | F     | SSB    | Pr(SSB > | R       | ABC       | ABC       | ABC            | ABC            |
|------|-------|--------|----------|---------|-----------|-----------|----------------|----------------|
|      |       |        | SSBmsy)  |         | landings  | discards  | landings       | discards       |
|      |       |        |          |         | (1000 lb) | (1000 lb) | (1000<br>fish) | (1000<br>fish) |
| 2012 | 1.216 | 178.97 | 0.14     | 128.615 | 484.815   | 0.0524    | 97.811         | 0.0106         |
| 2013 | 2.084 | 125.48 | 0.05     | 117.750 | 484.815   | 0.0524    | 104.953        | 0.0113         |
| 2014 | 5.363 | 71.44  | 0.03     | 109.205 | 484.815   | 0.0524    | 125.174        | 0.0135         |
| 2015 | 0     | 76.24  | 0.03     | 92.260  | 0         | 0         | 0              | 0              |
| 2016 | 0     | 113.78 | 0.08     | 94.403  | 0         | 0         | 0              | 0              |
| 2017 | 0     | 152.41 | 0.19     | 106.545 | 0         | 0         | 0              | 0              |
| 2018 | 0     | 188.59 | 0.33     | 114.100 | 0         | 0         | 0              | 0              |
| 2019 | 0     | 224.85 | 0.47     | 118.864 | 0         | 0         | 0              | 0              |
| 2020 | 0     | 262.44 | 0.60     | 122.333 | 0         | 0         | 0              | 0              |
| 2021 | 0     | 300.26 | 0.69     | 125.052 | 0         | 0         | 0              | 0              |
| 2022 | 0     | 337.50 | 0.77     | 127.182 | 0         | 0         | 0              | 0              |
| 2023 | 0     | 373.66 | 0.82     | 128.862 | 0         | 0         | 0              | 0              |

Table 3. Scenario 2: F=Frebuild with 50% probability. Acceptable biological catch (ABC) in units of 1000 lb whole weight and 1000s fish. F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = proportion$  of replicates where SSB was above the point estimate of  $SSB_{MSY} = 246.6$  mt, R = recruits (1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.

| Year | F     | SSB    | Pr(SSB > | R       | ABC                   | ABC                   | ABC                        | ABC                        |
|------|-------|--------|----------|---------|-----------------------|-----------------------|----------------------------|----------------------------|
|      |       |        | SSBmsy)  |         | landings<br>(1000 lb) | discards<br>(1000 lb) | landings<br>(1000<br>fish) | discards<br>(1000<br>fish) |
| 2012 | 1.216 | 178.97 | 0.14     | 128.615 | 484.815               | 0.0524                | 97.811                     | 0.0106                     |
| 2013 | 2.084 | 125.48 | 0.05     | 117.750 | 484.815               | 0.0524                | 104.953                    | 0.0113                     |
| 2014 | 5.363 | 71.44  | 0.03     | 109.205 | 484.815               | 0.0524                | 125.173                    | 0.0135                     |
| 2015 | 0.185 | 75.02  | 0.03     | 92.260  | 15.996                | 0.0017                | 4.254                      | 0.0005                     |
| 2016 | 0.185 | 107.95 | 0.06     | 93.874  | 31.101                | 0.0034                | 7.279                      | 0.0008                     |
| 2017 | 0.185 | 138.32 | 0.10     | 105.063 | 50.792                | 0.0055                | 10.889                     | 0.0012                     |
| 2018 | 0.185 | 162.42 | 0.16     | 111.724 | 71.950                | 0.0078                | 14.492                     | 0.0016                     |
| 2019 | 0.185 | 183.09 | 0.23     | 115.589 | 91.444                | 0.0099                | 17.552                     | 0.0019                     |
| 2020 | 0.185 | 202.47 | 0.30     | 118.240 | 107.108               | 0.0116                | 19.790                     | 0.0021                     |
| 2021 | 0.185 | 220.47 | 0.37     | 120.315 | 120.384               | 0.0130                | 21.627                     | 0.0023                     |
| 2022 | 0.185 | 236.82 | 0.44     | 121.965 | 133.132               | 0.0144                | 23.422                     | 0.0025                     |
| 2023 | 0.185 | 251.29 | 0.50     | 123.279 | 145.395               | 0.0157                | 25.145                     | 0.0027                     |

Table 4. Scenario 3:  $F=F_{msy}$ . Acceptable biological catch (ABC) in units of 1000 lb whole weight and 1000s fish. F= fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt, R= recruits (1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.

| Year | F     | SSB    | Pr(SSB > | R       | ABC       | ABC       | ABC            | ABC            |
|------|-------|--------|----------|---------|-----------|-----------|----------------|----------------|
|      |       |        | SSBmsy)  |         | landings  | discards  | landings       | discards       |
|      |       |        |          |         | (1000 lb) | (1000 lb) | (1000<br>fish) | (1000<br>fish) |
| 2012 | 1.216 | 178.97 | 0.14     | 128.615 | 484.815   | 0.0524    | 97.811         | 0.0106         |
| 2013 | 2.084 | 125.48 | 0.05     | 117.750 | 484.815   | 0.0524    | 104.953        | 0.0113         |
| 2014 | 5.363 | 71.44  | 0.03     | 109.205 | 484.815   | 0.0524    | 125.174        | 0.0135         |
| 2015 | 0.302 | 74.27  | 0.03     | 92.260  | 25.592    | 0.0028    | 6.827          | 0.0007         |
| 2016 | 0.302 | 104.57 | 0.05     | 93.544  | 47.836    | 0.0052    | 11.295         | 0.0012         |
| 2017 | 0.302 | 130.70 | 0.07     | 104.147 | 74.855    | 0.0081    | 16.271         | 0.0018         |
| 2018 | 0.302 | 149.31 | 0.09     | 110.274 | 101.639   | 0.0110    | 20.871         | 0.0023         |
| 2019 | 0.302 | 163.77 | 0.12     | 113.608 | 123.962   | 0.0134    | 24.408         | 0.0026         |
| 2020 | 0.302 | 176.81 | 0.15     | 115.778 | 139.585   | 0.0151    | 26.658         | 0.0029         |
| 2021 | 0.302 | 188.76 | 0.18     | 117.487 | 151.690   | 0.0164    | 28.398         | 0.0031         |
| 2022 | 0.302 | 199.43 | 0.22     | 118.883 | 163.315   | 0.0176    | 30.168         | 0.0033         |
| 2023 | 0.302 | 208.54 | 0.25     | 120.011 | 174.399   | 0.0188    | 31.869         | 0.0034         |

Table 5. Scenario 4:  $F=F_{current}$  (geometric mean F 2009, 2010, 2012). Acceptable biological catch (ABC) in units of 1000 lb whole weight and 1000s fish. F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt, R = recruits (1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.

| Year | F     | SSB    | Pr(SSB > | R       | ABC       | ABC       | ABC            | ABC            |
|------|-------|--------|----------|---------|-----------|-----------|----------------|----------------|
|      |       |        | SSBmsy)  |         | landings  | discards  | landings       | discards       |
|      |       |        |          |         | (1000 lb) | (1000 lb) | (1000<br>fish) | (1000<br>fish) |
| 2012 | 1.216 | 178.97 | 0.14     | 128.615 | 484.815   | 0.0524    | 97.811         | 0.0106         |
| 2013 | 2.084 | 125.48 | 0.05     | 117.750 | 484.815   | 0.0524    | 104.953        | 0.0113         |
| 2014 | 5.363 | 71.44  | 0.03     | 109.205 | 484.815   | 0.0524    | 125.174        | 0.0135         |
| 2015 | 1.064 | 69.67  | 0.02     | 92.260  | 80.772    | 0.0087    | 21.984         | 0.0024         |
| 2016 | 1.064 | 86.65  | 0.01     | 91.424  | 121.080   | 0.0131    | 30.152         | 0.0033         |
| 2017 | 1.064 | 96.10  | 0.01     | 98.488  | 153.015   | 0.0165    | 36.111         | 0.0039         |
| 2018 | 1.064 | 98.25  | 0.00     | 101.660 | 172.250   | 0.0186    | 39.498         | 0.0043         |
| 2019 | 1.064 | 98.26  | 0.00     | 102.318 | 179.166   | 0.0194    | 40.566         | 0.0044         |
| 2020 | 1.064 | 99.48  | 0.00     | 102.321 | 177.927   | 0.0192    | 40.291         | 0.0044         |
| 2021 | 1.064 | 101.66 | 0.00     | 102.687 | 178.585   | 0.0193    | 40.575         | 0.0044         |
| 2022 | 1.064 | 103.57 | 0.00     | 103.328 | 182.755   | 0.0197    | 41.492         | 0.0045         |
| 2023 | 1.064 | 104.71 | 0.00     | 103.870 | 186.665   | 0.0202    | 42.262         | 0.0046         |

Table 6. Scenario 5:  $F=F_{rebuild}$  with 72.5% probability. Acceptable biological catch (ABC) in units of 1000 lb whole weight and 1000s fish. F= fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt, R= recruits (1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.

| Year | F     | SSB    | Pr(SSB > | R       | ABC       | ABC       | ABC            | ABC            |
|------|-------|--------|----------|---------|-----------|-----------|----------------|----------------|
|      |       |        | SSBmsy)  |         | landings  | discards  | landings       | discards       |
|      |       |        |          |         | (1000 lb) | (1000 lb) | (1000<br>fish) | (1000<br>fish) |
| 2012 | 1.216 | 178.97 | 0.14     | 128.615 | 484.815   | 0.0524    | 97.811         | 0.0106         |
| 2013 | 2.084 | 125.48 | 0.05     | 117.750 | 484.815   | 0.0524    | 104.953        | 0.0113         |
| 2014 | 5.363 | 71.44  | 0.03     | 109.205 | 484.815   | 0.0524    | 125.174        | 0.0135         |
| 2015 | 0.075 | 75.74  | 0.03     | 92.260  | 6.601     | 0.0007    | 1.750          | 0.0002         |
| 2016 | 0.075 | 111.35 | 0.07     | 94.188  | 13.343    | 0.0014    | 3.097          | 0.0003         |
| 2017 | 0.075 | 146.37 | 0.15     | 105.940 | 22.754    | 0.0025    | 4.813          | 0.0005         |
| 2018 | 0.075 | 177.07 | 0.25     | 113.126 | 33.690    | 0.0036    | 6.661          | 0.0007         |
| 2019 | 0.075 | 205.94 | 0.37     | 117.519 | 44.767    | 0.0048    | 8.383          | 0.0009         |
| 2020 | 0.075 | 234.54 | 0.49     | 120.651 | 54.818    | 0.0059    | 9.808          | 0.0011         |
| 2021 | 0.075 | 262.17 | 0.58     | 123.105 | 64.177    | 0.0069    | 11.068         | 0.0012         |
| 2022 | 0.075 | 288.31 | 0.66     | 125.035 | 73.528    | 0.0079    | 12.312         | 0.0013         |
| 2023 | 0.075 | 312.60 | 0.73     | 126.562 | 82.872    | 0.0090    | 13.529         | 0.0015         |

Table 7. Acceptable biological catch (ABC) in units of 1000 lb whole weight based on the annual probability of overfishing  $P^* = 0.5$ .  $F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight), <math>Pr(SSB > SSB_{MSY}) = proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt, R = recruits (1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.

| Year | F     | Pr(F ><br>Fmsy) | Р*  | SSB     | Pr(SSB ><br>SSBmsy) | R       | ABC landings | ABC<br>discards |
|------|-------|-----------------|-----|---------|---------------------|---------|--------------|-----------------|
|      |       |                 |     |         |                     |         | (1000 lb)    | (1000 lb)       |
| 2013 | 1.54  | 0.99            | NA  | 150.285 | 0.03                | 106.423 | NA           | NA              |
| 2014 | 3.17  | 1.00            | NA  | 101.240 | 0.02                | 96.623  | NA           | NA              |
| 2015 | 0.238 | 0.50            | 0.5 | 102.593 | 0.02                | 83.011  | 32.854       | 0.00355         |
| 2016 | 0.234 | 0.50            | 0.5 | 132.846 | 0.05                | 83.213  | 54.548       | 0.00589         |
| 2017 | 0.231 | 0.50            | 0.5 | 158.401 | 0.10                | 90.402  | 77.379       | 0.00836         |

Table 8. Acceptable biological catch (ABC) in units of 1000s of fish based on the annual probability of overfishing  $P^* = 0.5$ . F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt, R = PCPU = 1000 age-1 fish). Annual ABCs are a single quantity while other values presented are medians.

| Year | F     | Pr(F > | Р*  | SSB     | Pr(SSB > | R       | ABC landings | ABC                     |
|------|-------|--------|-----|---------|----------|---------|--------------|-------------------------|
|      |       | Fmsy)  |     |         | SSBmsy)  |         | (1000 fish)  | discards<br>(1000 fish) |
| 2013 | 1.54  | 0.99   | NA  | 150.285 | 0.03     | 106.423 | NA           | NA                      |
| 2014 | 3.17  | 1.00   | NA  | 101.240 | 0.02     | 96.623  | NA           | NA                      |
| 2015 | 0.238 | 0.50   | 0.5 | 102.593 | 0.02     | 83.011  | 7.782        | 0.00084                 |
| 2016 | 0.234 | 0.50   | 0.5 | 132.846 | 0.05     | 83.213  | 11.787       | 0.00127                 |
| 2017 | 0.231 | 0.50   | 0.5 | 158.401 | 0.10     | 90.402  | 15.664       | 0.00169                 |

Table 9. Acceptable biological catch (ABC) in units of 1000 lb whole weight based on the annual probability of overfishing  $P^* = 0.3$ . F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt, R = PCP = 1000 replicates where R = PCP = 1000 replicates R = PCP = 1000 representation R = PCP = 1000 representation R = PCP = 1000 representation R =

| Year | F     | Pr(F ><br>Fmsy) | Р*  | SSB     | Pr(SSB ><br>SSBmsy) | R       | ABC landings<br>(1000 lb) | ABC<br>discards<br>(1000 lb) |
|------|-------|-----------------|-----|---------|---------------------|---------|---------------------------|------------------------------|
| 2013 | 1.54  | 0.99            | NA  | 150.285 | 0.03                | 106.423 | NA                        | NA                           |
| 2014 | 3.17  | 1.00            | NA  | 101.240 | 0.02                | 96.623  | NA                        | NA                           |
| 2015 | 0.151 | 0.30            | 0.3 | 103.566 | 0.02                | 83.011  | 21.192                    | 0.00229                      |
| 2016 | 0.152 | 0.30            | 0.3 | 136.680 | 0.05                | 83.562  | 37.483                    | 0.00405                      |
| 2017 | 0.152 | 0.30            | 0.3 | 166.063 | 0.12                | 91.495  | 55.608                    | 0.00601                      |

Table 10. Acceptable biological catch (ABC) in units of 1000s fish based on the annual probability of overfishing  $P^* = 0.3$ . F = fishing mortality rate (per yr), SSB = mid-year spawning stock biomass (mature female biomass in metric tons whole weight),  $Pr(SSB > SSB_{MSY}) = Proportion of replicates where SSB was above the point estimate of <math>SSB_{MSY} = 246.6$  mt,  $R = PCP_{MSY} = 246.6$ 

| Year | F     | Pr(F > | P*  | SSB     | Pr(SSB > | R       | ABC landings | ABC                     |
|------|-------|--------|-----|---------|----------|---------|--------------|-------------------------|
|      |       | Fmsy)  |     |         | SSBmsy)  |         | (1000 fish)  | discards<br>(1000 fish) |
| 2013 | 1.54  | 0.99   | NA  | 150.285 | 0.03     | 106.423 | NA           | NA                      |
| 2014 | 3.17  | 1.00   | NA  | 101.240 | 0.02     | 96.623  | NA           | NA                      |
| 2015 | 0.151 | 0.30   | 0.3 | 103.566 | 0.02     | 83.011  | 5.004        | 0.000540                |
| 2016 | 0.152 | 0.30   | 0.3 | 136.680 | 0.05     | 83.562  | 8.036        | 0.000868                |
| 2017 | 0.152 | 0.30   | 0.3 | 166.063 | 0.12     | 91.495  | 11.1224      | 0.00120                 |

Figure 1. Scenario 1: F=0. For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (landings and dead discards are separated in the associated Tables). Annual ABCs are a single quantity while other values presented are medians. Error bars represent the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the 10,000 projection runs.

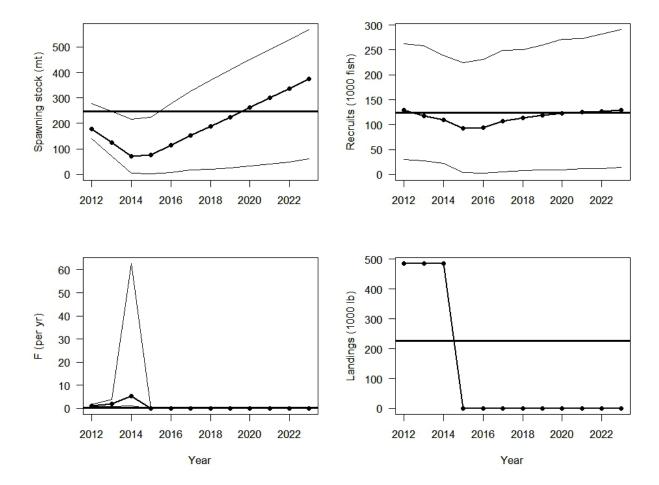



Figure 2. Scenario 1:  $F=F_{rebuild}$  with 50% probability. For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (landings and dead discards are separated in the associated Tables). Annual ABCs are a single quantity while other values presented are medians. Error bars represent the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the 10,000 projection runs.

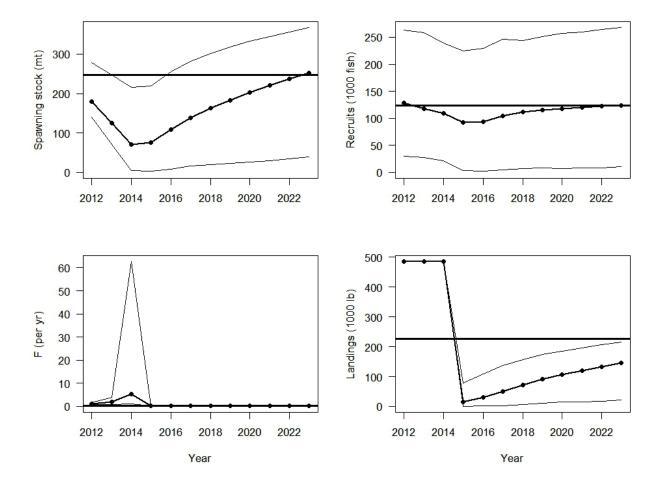



Figure 3. Scenario 1:  $F=F_{msy}$ . For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (landings and dead discards are separated in the associated Tables). Annual ABCs are a single quantity while other values presented are medians. Error bars represent the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the 10,000 projection runs.

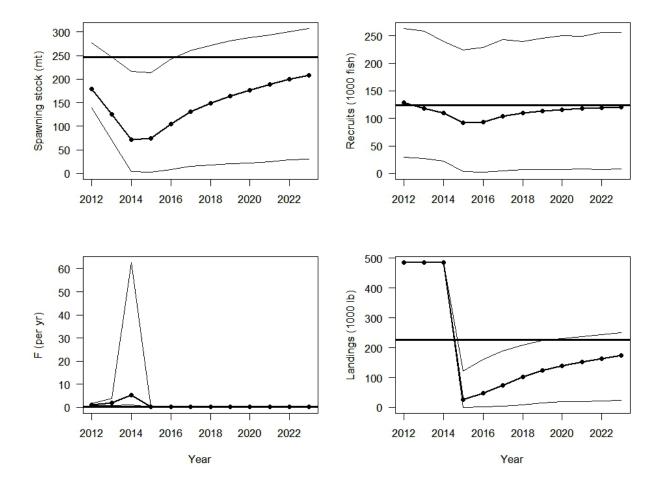



Figure 4. Scenario 1: F=F<sub>current</sub> (geometric mean F from 2009, 2010, and 2012). For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (landings and dead discards are separated in the associated Tables). Annual ABCs are a single quantity while other values presented are medians. Error bars represent the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the 10,000 projection runs.

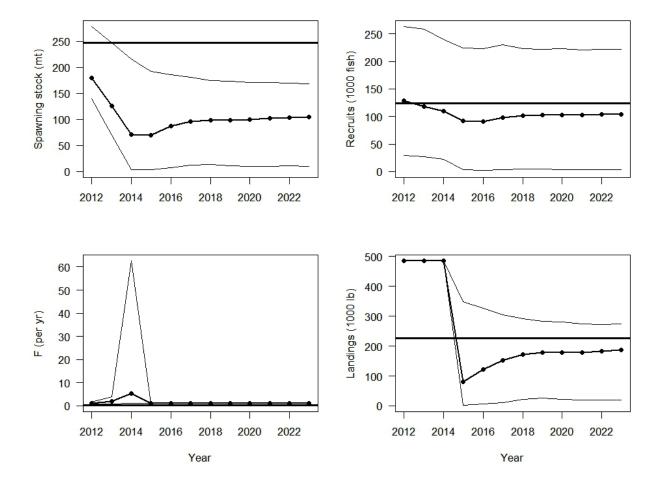



Figure 5. Scenario 1:  $F=F_{rebuild}$  with 72.5% probability. For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (landings and dead discards are separated in the associated Tables). Annual ABCs are a single quantity while other values presented are medians. Error bars represent the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the 10,000 projection runs.

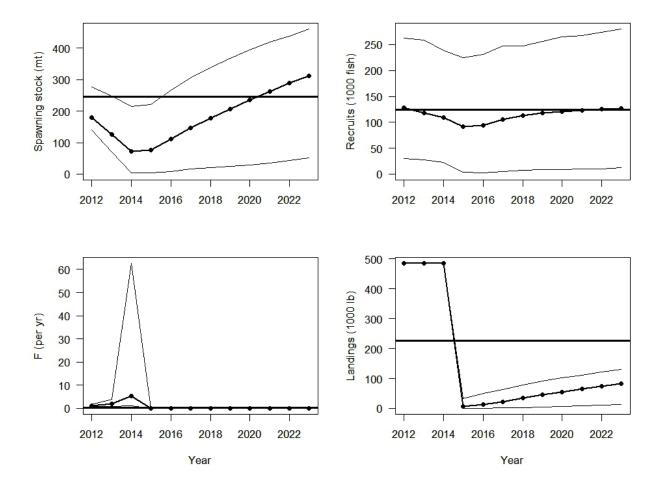



Figure 6.  $P^* = 0.5$  projection results. For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (i.e., Landings = Catch). Annual ABCs (panel E) are a single quantity while other values presented are medians. Error bars represent the  $5^{th}$  and  $95^{th}$  percentiles of the 10,000 projection runs.

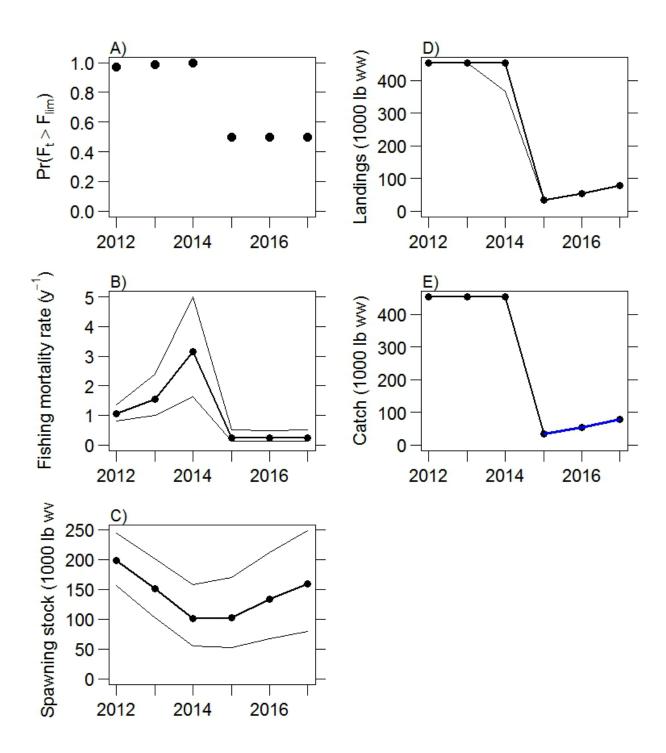
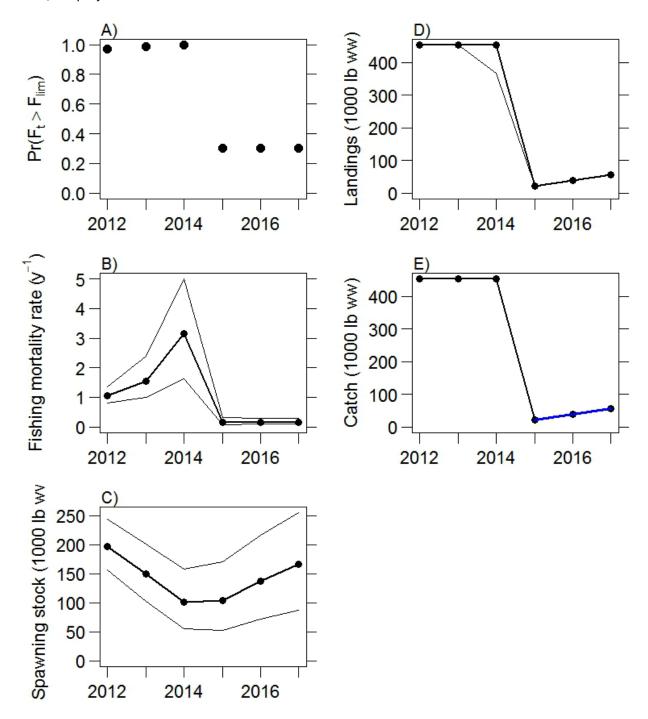




Figure 7.  $P^* = 0.3$  projection results. For this assessment, discards were combined with landings so the ABC reflects both landings and dead discards (i.e., landings = catch). Annual ABCs (panel E) are a single quantity while other values presented are medians. Error bars represent the  $5^{th}$  and  $95^{th}$  percentiles of the 10,000 projection runs.

