THE SOUTH ATLANTIC REGION ECOPATH MODEL Forming a workgroup to facilitate SSC engagement Tom Okey, Ocean Integrity Research and the University of Victoria Roger Pugliese, South Atlantic Fishery Management Council Howard Townsend, NOAA/NMFS/ST/Ecosystems SAFMC Scientific and Statistical Committee Meeting 15-17 October 2018 ## FISHERY-ECOSYSTEM MODEL #### ECOPATH / ECOSIM / ECOSPACE #### **ECOPATH** **Unexplained mortality** 1-EE; 1. $$\left(\frac{Q}{B}\right)_i \cdot B_i = \left(\frac{P}{B}\right)_i \cdot B_i + R_i + UN_i$$ 2. $$\left(\frac{P}{B}\right)_{i} \cdot B_{i} = \sum_{\text{Pred}_{j=1}}^{n} \left(\frac{Q}{B}\right)_{j} \cdot B_{j} \cdot DC_{ij} + E_{i} + Y_{i} + BA_{i} + \left(\frac{P}{B}\right)_{i} \cdot B_{i} \cdot (1 - EE_{i})$$ ## Diet composition e.g., for a tuna Use volume or weight! #### HISTORY OF THE SAB MODEL - 2001 Strawman 48-group model constructed - 2004 Preliminary 98-group model developed - 2014 Model refined to address forage fish questions (99 groups) - 2018 Model refinement to articulate the managed species (137 boxes) #### **Preliminary** SAS model - Sponsored by SAFMC - 42-box model - 98-box model #### **Fisheries Centre** Research Reports #### 2001 Volume 9 Number 4 Southeastern United States, Atlantic Shelf, Page 167 A PRELIMINARY ECOPATH MODEL OF THE ATLANTIC CONTINENTAL SHELF ADJACENT TO THE SOUTHEASTERN UNITED STATES #### Thomas A. Okev¹ and Roger Pugliese² Fisheries Centre, University of British Columbia, 2204 Main Mall, V6T 1Z4, Vancouver BC Canada email: t.okey@fisheries.ubc.ca 2South Atlantic Fishery Management Council, One Southpark Circle, Suite 206, Charleston SC 29407 USA #### ABSTRACT The biological communities of the Atlantic continental shelf adjacent to the southeastern United States are well known, but this knowledge is not integrated into a cohesive description of that region. We constructed a preliminary food web model of this area using Ecopath with Ecosim, as a way to initiate a long-term process of integrating this knowledge, learning more about the structure and resiliency of the system, and helping to guide research priorities in the future. The current model is considered to be a first iteration that can be used as a vehicle to stimulate a more rigorous refinement effort in the near future. The ecologically defined area covered by this model extends from Cape Hatteras, North Carolina to the easternmost extent of the Florida Kevs, and from the intertidal zone (or the entrance of estuarine systems) to the 500 m isobath. The time period characterized by this preliminary model is the four years from 1995 to 1998. the Gulf Stream advect the underlying nutrient rich slope waters onto the shelf (Mallin et al. 2000).. This region as a whole supports a diverse assemblage of marine organisms, as it is somewhat of an ecological interface, or gradient, between warm-water and cold-water species assemblages. We refer the reader to Mallin et al. (2000) for a general description of the ecological setting, processes, and related research. A brief overview of special habitats is presented below. Human activities along the east coast of the southeastern United States have influenced the adiacent continental shelf ecosystem for thousands of years, as native Americans conducted some limited artisanal fisheries and modified fire regimes and the vegetation in upland watersheds (e.g., Cronon, 1983). Modifications to the ecology of the continental shelf ecosystem accelerated soon after the arrival of Europeans, who began fishing coastal waters (e.g., Mowat, 1984; Reeves et al., 1999) in addition to introducing domesticated livestock, weed plants, disease, and new kinds of agriculture (e.g., Crosby, 1986). Other profound anthropogenic modifications to this continental shelf occurred during the 20th century with the widespread use of powered fishing and whaling vessels, and coastal urbanization and industrialization. particularly destructive type of fishing is bottom trawling, which destroys biogenic seafloor habitat in addition to simply removing fishes (Watling and Norse, 1998: Turner et al., 1999). Trawling activity is intense in this area, and little doubt remains that these activities have considerably modified the continental shelf. The ## **Primary contributors** - Behzad Mahmoudi (FMRI) - Bob Feller (USC) - David Whitaker (SCDNR) - Doug Vaughan (NMFS) - Marty Levissen (SCDNR) - Jack McGovern (NMFS) - Larry DeLancey (SCDNR) - Bill Sharp (FMRI) - Whit Gibbons (UGA) - Joan Browder (NMFS) - John Carlson (NMFS) - Larry Cahoon (UNC) - Galen Johnson (UNC) - Megan Gamble (ASMFC) - Brad Spear (ASMFC) - Toni Kearns (ASMFC) - Peter Verity (SKIO) - Wilson Laney (USFWS) ## **Secondary contributors** - Elizabeth Wenner (SCDNR) - Robert George (GIBS) - Carolyn Currin (NOAA) - Chuck Hunter (USFWS) - Craig Watson (USFWS) - Damon Gannon (Mote Lab) - Desmond Kahn (DEDNR) - Enric Cortez (NMFS) - George Sedberry (SCDNR) - Greg McFall (GRNMS) - Hans Paerl (UNC) - Jennifer Wheaton (FMRI) - Jenny Purcell (WWU) - Jim Nance (NMFS) - John Merriner (NOAA) - Doug Forsell (USFWS) - Jon Hare (NOAA) - Jose Castro (Mote Lab) - Ken Lindeman (ED) - Mark Epstein (USFWS) - Martin Posey (UNC) - Paul Carlson (FMRI) - Steve Ross (UNC) - Buddy Powell (WT) - Alan Bolten (UFL) - Karen Bjorndal (UFL) - Bob Noffsinger (USFWS) - Sean McKenna (NCDENR) - Pat Tester (NOAA) - Lance Garrison (NMFS) - Myra Brower (SEFMC) # Forage version 2014 - Sponsored by Pew Charitable Trusts - Forage groups articulated - 99-box model #### Fisheries Centre The University of British Columbia #### **Working Paper Series** Working Paper #2014 - 14 Exploring the Trophodynamic Signatures of Forage Species in the U.S. South Atlantic Bight Ecosystem to Maximize System-Wide Values Thomas A. Okey, Andrés M. Cisneros-Montemayor, Roger Pugliese, Ussif R. Sumaila Year: 2014 Email: thomas.okey@gmail.com This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. ## Articulated forage groups in the 2014 99-box South Atlantic Bight *EwE* model Anchovies Scads Atlantic menhaden Shad Atlantic silverside Thread herring Halfbeaks Pelagic oceanic planktivores Mullets Squids Sardines Shrimps #### Forage Groups in the 99-box South Atlantic Bight model | Group | Species included | B
(t [·] km ⁻
²) | P/B
(year ⁻
¹) | Q/B
(year ⁻ | |---------------------------------|---|--|---|---------------------------| | Anchovies | Bay (Anchoa mitchilli), striped (A. hepsetus), silver (Engraulis eurystole) | 3.75 | 1.45 | 17.50 | | Atlantic
menhaden | Brevoortia tyrannus (not B. patronus) | 7.05 | 1.70 | 7.84 | | Atlantic silverside | Menidia menidia | 1.18 | 2.00 | 14.90 | | Halfbeaks | Ballyhoo (Hemiramphus brasiliensis), balao (H. balao), common or Atlantic silverstripe (Hyporhamphus unifasciatus) | 1.22 | 2.60 | 11.70 | | Mullets | Striped (Mugil cephalus), other (Mugil spp.) | 0.11 | 0.70 | 11.03 | | Sardines | Spanish (Sardinella aurita), scaled (Harengula jaguana) | 1.93 | 1.11 | 11.82 | | Scads | Round (Decapterus punctatus), rough (Trachurus lathami), bigeye (Selar crumenophthalmus) | 2.28 | 0.92 | 10.00 | | Shad | Alosa spp. | 3.97 | 0.50 | 3.80 | | Thread herring | Atlantic thread herring (Ophistonema oglinum) | 0.28 | 1.60 | 13.26 | | Pelagic oceanic
planktivores | Chub mackerel (Scomber japonicus),
lanternfish (Diaphus spp.), antenna codlet
(Bregmaceros atlanticus), striated argentine
(Argentina striata), flyingfish (Exocoetidae) | 3.95 | 0.87 | 11.71 | | Squids | Shortfin (Illex illecebrosus), longfin (Loligo pealei) | 0.45 | 2.67 | 36.50 | | Shrimps | Rock shrimps and penaeid shrimps | 2.53 | 5.38 | 19.20 | ## Focused on predatory fish of particular value in the 99-box SAB ecosystem model Spanish/king mackerels Vermillion snapper Gag grouper Dolphinfish **Black seabass** Greater amberjack Cobia **Red snapper** #### Species / Groups in the 2014 SAB 99-box model | Coastal bottlenose dolphin | Thread herring | Seabass | Estuarine infaunal crustaceans | |---------------------------------|--------------------------------|----------------------------|--------------------------------| | Manatees | Shad | Wreckfish | Estuarine polychaetes | | Large coastal sharks | Anchovies | Other fishes | Bivalves/Oysters | | Small coastal sharks | Atlantic silverside | Sea turtles | Offshore infaunal crustaceans | | Baleen whales | Halfbeaks | Carnivorous jellies | Offshore polychaetes | | Pelagic sharks | Pelagic oceanic invertivores | Birds oceanic piscivores | Small mobile epifauna | | Rays and skates | Demersal coastal invertivores | Birds shorebirds | Calico scallops | | Dogfish sharks | Demersal coastal omnivores | Birds shelf piscivores | Benthic meiofauna | | Adult mackerel | Benthic oceanic piscivores | Birds herbivores | Deep-burrowing infauna | | Juvenile mackerel | Benthic oceanic invertivores | Birds wading piscivores | Carnivorous zooplankton | | Bluefish | Benthic coastal piscivores | Birds shelf invertivores | Aquatic and other insects | | Weakfish | Benthic coastal invertivores | Birds raptors | Other zooplankton | | Red drum | Benthic coastal planktivores | Encrusting fauna | Ichthyoplankton | | Atlantic menhaden | Reef associated piscivores | Squids | Microbial heterotrophs | | Mullets | Reef associated omnivores | Stomatopods | Phytoplankton | | Other Drums & Croakers | Triggerfish | Octopods | Microphytobenthos | | Striped bass | Shallow water grouper/tilefish | Blue crabs | Benthic macroalgae | | Highly migratory pelagics | Goliath grouper | Horseshoe crabs | Pelagic macroalgae | | Dolphinfish | Nassau grouper | Golden crabs | Seagrasses | | Pelagic oceanic piscivores | Deep-water grouper/tilefish | Stone crabs | Marsh vegetation | | Pelagic coastal piscivores | Shallow-water snapper | Spiny lobster | Estuarine benthic detritus | | Nearshore piscivores | Mid-shelf snapper | Rock shrimps | Offshore benthic detritus | | Pelagic oceanic
planktivores | Jacks | Penaeid shrimps | Water-column detritus | | Sardines | Red porgy | Megafaunal predators | Dead carcasses | | Scads | Grunts and porgys | Echinoderms and gastropods | | #### **NEW 99 BOX SAB MODEL (FORAGE)** ## Articulated Managed Species / Groups in the 2017 SAB 137-box model | Adult king mackerel | Red grouper | Vermilion snapper | |---------------------------|--------------------------------|-------------------------| | Juvenile king mackerel | Black grouper | Silk snapper | | Spanish Mackerel | Scamp grouper | Red snapper | | Juvenile spanish mackerel | Other shallow grouper/tilefish | Other mid-shelf snapper | | Spotted seatrout | Snowy grouper | Greater amberjack | | Snook | Yellowedge grouper | Almaco jack | | Tarpon | Other deep grouper | Bar Jack | | Cobia | Blueline tilefish | Banded rudderfish | | Bonefish | Golden tilefish | Blue runner | | Permit | Yellowtail snapper | Other jacks | | Atlantic Spadefish | Mutton snapper | Other porgys | | Hogfish | Gray snapper | White grunt | | Ocean triggerfish | Lane snapper | Other grunts | | Gray triggerfish | Cubera snapper | Black Seabass | | Gag grouper | Other shallow snapper | Bank/Rock seabass | #### Species / Groups in SAB 137-box model | Coastal bottlenose dolphin | Nearshore piscivores | Gag grouper | Red porgy | Penaeid shrimps | |----------------------------|-------------------------------|--------------------------------|--------------------------|--------------------------------| | Manatees | Pelagic oceanic planktivores | Red grouper | Other porgys | Megafaunal predators | | Large coastal sharks | Sardines | Black grouper | White grunt | Echinoderms and gastropods | | Small coastal sharks | Scads | Scamp grouper | Other grunts | Estuarine infaunal crustaceans | | Baleen whales | Thread herring | Goliath grouper | Black seabass | Estuarine polychaetes | | Pelagic sharks | Shad | Nassau grouper | Rock/Bank seabass | Bivalves/Oysters | | Rays and skates | Anchovies | Other shallow grouper/tilefish | Wreckfish | Offshore infaunal crustaceans | | Dogfish sharks | Atlantic silverside | Snowy grouper | Other fishes | Offshore polychaetes | | Adult king mackerel | Halfbeaks | Yellowedge grouper | Sea turtles | Small mobile epifauna | | Juvenile king mackerel | Pelagic oceanic invertivores | Other deep grouper | Carnivorous jellies | Calico scallops | | Spanish mackerel | Permit | Blueline tilefish | Birds oceanic piscivores | Benthic meiofauna | | Juv Spanish mackerel | Demersal coastal invertivores | Golden tilefish | Birds shorebirds | Deep-burrowing infauna | | Bluefish | Demersal coastal omnivores | Yellowtail snapper | Birds shelf piscivores | Carnivorous zooplankton | | Weakfish | Atlantic spadefish | Mutton snapper | Birds herbivores | Other zooplankton | | Red drum | Benthic oceanic piscivores | Gray snapper | Birds wading piscivores | Ichthyoplankton | | Atlantic menhaden | Benthic oceanic invertivores | Lane snapper | Birds shelf invertivores | Microbial heterotrophs | | Spotted seatrout | Red Lionfish | Cubera snapper | Birds raptors | Phytoplankton | | Mullets | Summer flounder | Other shallow snapper | Encrusting fauna | Microphytobenthos | | Other Drums & Croakers | Southern flounder | Vermilion snapper | Squids | Benthic macroalgae | | Striped bass | Gulf flounder | Silk snapper | Stomatopods | Pelagic macroalgae | | Highly migratory pelagics | Benthic coastal piscivores | Red snapper | Octopods | Seagrasses | | Dolphinfish | Benthic coastal invertivores | Other mid-shelf snapper | Blue crabs | Marsh vegetation | | Pelagic oceanic piscivores | Hogfish | Greater amberjack | Horseshoe crabs | Estuarine benthic detritus | | Snook | Benthic coastal planktivores | Almaco jack | Golden crabs | Offshore benthic detritus | | Tarpon | Reef associated piscivores | Bar jack | Stone crabs | Water-column detritus | | Pelagic coastal piscivores | Reef associated omnivores | Banded rudderfish | Spiny lobster | Dead carcasses | | Cobia | Ocean triggerfish | Blue runner | Rock shrimps | | | Bonefish | Gray triggerfish | Other jacks | | | ### OUR WORKING GROUP - Roger Pugliese South Atlantic Fishery Management Council - Dr. Rua Mordecai, SALCC, Dr. Simeon Yurek, USGS - Dr. Marcel J. Reichert Marine Resources Research Institute, South Carolina Department of Natural Resources (Tracey Smart, Wally Bubley) - Dr. Howard Townsend NOAA/NMFS/ST/Ecosystems - Dr. Luiz Barbieri Florida Fish and Wildlife Conservation Commission, FWRI - Dr. Ruoying He Department of Marine, Earth and Atmospheric Sciences, North Carolina State University - Dr. Peter Sheng Professor and Director, Coastal and Oceanographic Engineering Program, University of Florida - > **Dr. Thomas Okey –** Ocean Integrity Research, Victoria, BC, Canada - Dr. Jerald S. Ault Rosenstiel School of Marine and Atmospheric Science, University of Miami - > **Dr. Jeroen Steenbeek** Ecopath Research and Development Consortium - > **Dr. Patrick N. Halpin –** Director, Geospatial Analysis Program Duke University #### THE UPDATED ECOPATH MODEL WILL: - Support the SA Fishery Management Council's move to ecosystem-based management - Advance and refine the LCC conservation blueprint - Link to hydrodynamic oceanographic models and satellite data - Provide more realistic predictions about spatial policy options - Estimate impacts of episodic events that are limited in space (oil spills, red tides, upwelling) - Meet the immediate needs of the SSC and the South Atlantic Council #### **FORMING AN SSC WORKGROUP** | Analysis Type: | Review, guidance for further development and evaluation of potential tool development associated with Ecosystem Model. | |---------------------|--| | Analyst: | Tom Okey, UVic and Roger Pugliese, SAFMC Staff. > Possibilities of regional students and staff. | | Workgroup | Proposed -core SSC members and members of the | | Members: | Ecosystem Modeling Workgroup supporting SALCC funded model development. | | Tasks and Timeline: | Development of the next generation Ecopath with Ecosim Model is nearing completion; therefore, this process will start with a review of data used, methods developed, decisions made, and analyses completed to date. More detailed timeline will be developed after initial meeting of workgroup. | #### START WITH A COUPLE OF EXAMPLES - A. Simulate use of MSY for all managed species to explore the broad ecosystem effects - B. Begin investigating red snapper and black sea bass interactions #### B. Ecosystem Cascade - Red Snapper / Black Sea Bass Hypothesis: South Atlantic Red Snapper extreme biomass shift is driven in part by environmental variation and prey fluctuations in the South Atlantic region, potentially affecting other competitors. - 1. Black sea bass population is linked to red snapper as significant prey - Black sea bass are affected by environmental conditions (e.g., changing bottom temperature increased upwelling events off SE Florida) and availability of extensive nearshore and mid shelf live hard bottom habitat - 3. Significant increase and recent shift south of black sea bass biomass into location of core (possibly spawning) distribution of red snapper off South East Florida. - 4. Have currents shifted / eddies increased affecting settlement of black sea bass overall and onto South East Florida live hard bottom?? - 5. Does the increasing biomass of prey consumed by the growing report snapper population reduce availability to competitors possibly suppressing rebuilding/recovery (e.g., red grouper)? # THIS COULD BE THE END OF THE PRESENTATION I left in some additional slides in case there are any questions they can help with. #### Effect of Menhaden on other groups # Effect of Squids on other groups # Effect of all forage fish groups on other groups #### Effects of menhaden on valued predatory fish #### Effects of all forage fish on valued predatory fish #### CALIBRATING THE MODEL # TIME PREDICTIONS FROM THE STRAIT OF GEORGIA MODEL, 1950-2000 #### **ECOSPACE** #### **ECOSPACE** #### 1. Define environmental drivers Primary production Salinity (surface and bottom) Temperature (surface and bottom) Depth MSFD area restrictions #### 3. POPULATE ENV. DRIVER MAPS #### 2. Define environmental responses Here we are using a plug-in to import environmental responses from AquaMaps species envelopes #### 4. DEFINE ENV. RESPONSE CURVES #### Foraging habitat capacity model case study Full Mediterranean EwE model 90+ functional groups, assigned to 4 MSFD zones Time frame 1950 - 2010 Entire basin at 0.167 dd grid Piroddi et al (in progress) 4. Ecospace computes capacity (cetaceans - depth) 4. More capacity (Western sardine - depth, MSFD W)