

SEDAR 64 Interim Analysis: Southeastern U.S. Yellowtail Snapper Joint SSC Meeting Aug 4, 2022

Shanae D. Allen and Christopher E. Swanson

FWRI Stock Assessment Group, St. Petersburg, FL

Outline

<u>Part 1</u>

- Orientation: assessment and quota history
- Updates to the data
- Updates to model configuration
- Model results
- Model diagnostics

<u>Part 2</u>

- Sensitivity runs
- Model uncertainty
- Stock status overview
- Projection scenarios

S64 Interim Analysis: Yellowtail Snapper Assessment History

Assessment History

SEDAR 3 (2003)

- Integrated and Statistical Catch-at-Age model (ICA)
- Data from 1981 2001
- $F_{2001}/F_{msy} = 0.57$ (not overfishing); $SSB_{2001}/SSB_{msy} = 1.43$ (not overfished)

SEDAR 27A (2012)

- Statistical catch-at-age model (ASAP2)
- Data from 1981 2010
- $F_{msy} \rightarrow F_{30\% SPR}$; MSST = (1-M)*SSB_{30\% SPR}
- $F_{2001}/F_{30\% SPR} = 0.15$ (not overfishing); $SSB_{2001}/MSST = 3.36$ (not overfished)

SEDAR 64 (2020)

- Age- and size-structured assessment model in the integrated analysis class of models (SS 3.30.14)
- Data from **1992 2017**
- F_{30%SPR} ; MSST = 0.75*SSB_{30%SPR}

S64 Model Bridging

Config

Results

Diag

Data

Histor

Quota History

	Date	Total ACL		
	1/30/2012 – 11/2012	2,898,875 lbs. (1,315 mt)		
	9/3/2013 – present	3,938,625 lbs. (1,787 mt)		
South Atlantic		Date	ACL	
	Commonaid	Apr 2012 – Nov 2012	1,142,589 lbs.	
Commercial		Nov 2012 – Current	1,596,510 lbs.	
Commercial Closures		10/31/2015 – 12/31/2015		
		6/3/2017 – 7/31/2017		
		6/5/2018 – 7/31/2018		
		6/7/2019 – 7/31/2019		
Recreational (CHTS)		Apr 2012 – Sept 2013	1,031,286 lbs.	
		Sept 2013 – Current	1,440,990 lbs.	
Gulf of Mexico		Date	ACL	
Commercial and Decreational (CUTC)		Jan 2012 – Sept 2013	725,000 lbs.	
commer	Ciai anu Recreational (CHTS)	Sept 2013 – Current	901,125 lbs.	7

S64 Interim Analysis: Yellowtail Snapper Data

Term of Reference #1

- "Update the SEDAR 64 Southeastern U.S. Yellowtail Snapper base model in SS v.3.30.13 with landings and discard data for commercial, headboat, and other recreational fishing modes from 2018 to 2020."
 - Therefore, no indices nor any length and age composition data were updated.
- As was determined for the S64 benchmark assessment, only landings and discards data from Florida waters were considered as input.

Regions of Florida

Config Diag History Data Results

Updated Recreational Landings

History

Config

Data

Diag

Results

Updated Commercial and Recreational Discards

Config

History

Data

Diag

Results

2017 MRIP Landings: Southwest FL

History

Data

• *"Evaluate potential issues with 2017 MRIP recreational landings data. Determine if special treatment is appropriate."* (TOR #1 sub-point).

Config

Results

Diag

History

Config 🔶 📐

Results

Diag

2017 MRIP Landings: Southwest FL

Data

History Data Config Results Diag

2020 MRIP Landings

- "Evaluate potential issues with 2020 MRIP recreational landings data due to the COVID-19 pandemic." (TOR #1 sub-point)
 - Reduced sampling coverage
 - Higher than usual boating activity
- 489 total positive interviews
 - 295 (60.3%) were conducted by samplers in 2020.
 - 194 (39.7%) were imputed (i.e., 'imp_rec'==TRUE) from 2018 – 2019 APAIS data collected from the same strata.
 - Original sample weights were also reduced by a factor of two.

History Data Config Results Diag

2020 MRIP Landings

- "Evaluate potential issues with 2020 MRIP recreational landings data due to the COVID-19 pandemic." (TOR #1 sub-point)
 - Reduced sampling coverage
 - Higher than usual boating activity.
- 489 total positive interviews
 - 295 (60.3%) were conducted by samplers in 2020.
 - 194 (39.7%) were imputed (i.e., 'imp_rec'==TRUE) from 2018 – 2019 APAIS data collected from the same strata.
 - Original sample weights were also reduced by a factor of two.

- Imputations mostly in the Florida Keys (n = 128) and southeast Florida (n = 49) regions.
- Landings and discards data for 2020 were consistent with recent years and we determined
 That the reviewed methods of imputation were sufficient for Yellowtail Snapper

S64 Interim Analysis: Yellowtail Snapper Interim Base Model Configuration

Interim Base Model Configuration

History

Config

Data

Results

Stock Synthesis v. 3.30.15

- Moderate complexity
- Years: 1992 2020
- 1 season, 1 area
- Spawning: January
- Settlement: January at age 0, 2 cm FL
- Combined sex model with femaleonly SSB (frac_female = 0.5)

Life History (No change)

Diag

- Estimated growth using external VB growth model inputs as initial guesses
- 20 ages in the model; Age 12+ group
- Natural mortality: Fixed vector by age (Lorenzen 2005)
- Maturity: Fixed vector by age
- Fecundity = Spawning biomass at length
- Length-Weight: fixed

Interim Base Model Configuration

History

Recruitment Dynamics (Updated)

- Beverton-Holt stock-recruitment relationship
 - Virgin recruitment in log-space (*In(RO)*), the standard deviation of log of recruitment (*sigmaR*), and *steepness* estimated in model

Data

Config

Results

Diag

- Simple recruitment deviations
 - no sum-to-zero constraint
- Early recruitment deviations
 - 1981 1990 (period of lower data-richness)
- Main recruitment deviations
 - 1991 2020 (period of higher data-richness)
- Bias adjustments (following Methot and Taylor 2011)

• Updated in the IBM

History Data Config Results Diag

Interim Base Model Configuration

Parameters

- 88 out of 120 parameters estimated
 - No status change for IBM
 - Estimated values consistent with S64 Base Model

<u>Lambda</u>

• Age 4

- No emphasis on model fit (=0)
 - Initial equilibrium catch for all three fleets
 - No added lambda values

Reported Fishing Mortality Rates

<u>Priors</u>

 Symmetric betas on initial Fishing mortality rates for Commercial, Headboat, and MRIP fleets

• No added priors for IBM

22

Interim Base Model Configuration

History

Config

Data

Results

Model Convergence Criteria

- Total likelihood (sum of individual data source component's likelihoods)
- Invertible Hessian matrix
- Maximum gradient < 0.0001

Error Structure

 Assumed log-normal for all landings, indices, and discard data (except commercial discards)

Multinomial Distribution

Diag

• Length composition and conditional age-at-length data

Data Weighting (Updated)

- Length composition and conditional age-at-length data
- Initial sample sizes equal to sqrt (number of trips or number of fish)
- Iterative re-weighting following Francis (2011)
 - Updated in IBM
 - No significant changes to weights

S64 Interim Analysis: Yellowtail Snapper Interim Base Model Results

Model Estimated Landings

Reported vs Model Est. Recreational Landings (lbs.)

Discards

CISH AN

Figure 4

Discards

History Data Config Results Diag

Estimated Recruitment

29

Total and Spawning Stock Biomass

Figure 8

Figure 9

Numbers and spawning stock biomass at age

History Data Config Results Diag

Fishing Mortality

S64 Interim Analysis: Yellowtail Snapper Model Diagnostics

Model Convergence

- No estimated parameters on the bounds
- Final gradient < 0.0001
- Positive definite Hessian

Jitter Analysis

- 200 jittered runs
 - Initial values jittered by 20%
 - 112 runs (56%) had a high gradient and 58 runs (29%) did not have a positive definite Hessian matrix.
- No jittered runs contained a total likelihood lower than the IBM.
- Jittered runs filtered to include only those which both had a small final gradient and a positive definite Hessian matrix, indicating more plausible alternative model solutions.

A total of 85 runs (42.5%) remained and whose results suggested that the IBM had converged on a global solution.

History Data Config Results Diag

Goodness of Fit

Table 11

Runs Test				
Index	P-value	Lower 3 SD	Upper 3 SD	Metric
Commercial CPUE	0.001	-0.395	0.395	Failed
RVC Adult	0.656	-0.909	0.909	Passed
RVC Juvenile	0.148	-0.535	0.535	Passed
MRIP CPUE	0.135	-0.328	0.328	Passed

Figure 14
Goodness of Fit

Table 11

CISH AN

Runs Test				
Index	P-value	Lower 3 SD	Upper 3 SD	Metric
Commercial CPUE	0.001	-0.395	0.395	Failed
RVC Adult	0.656	-0.909	0.909	Passed
RVC Juvenile	0.148	-0.535	0.535	Passed
MRIP CPUE	0.135	-0.328	0.328	Passed

Mean length	P-value	Lower 3 SD	Upper 3 SD	Metric
Commercial	0.244	-0.038	0.038	Passed
Headboat	0.012	-0.037	0.037	Failed
MRIP	0.290	-0.114	0.114	Passed
RVC Adult	0.500	-0.152	0.152	Passed
RVC Juvenile	0.110	-0.143	0.143	Passed
MRIP CPUE	0.699	-0.073	0.073	Passed

Figure 15

Goodness of Fit

Model Consistency

Profiling of RO

- Identify how sources of information influence various model estimates
- R0 ≈ global scaling parameter
- R0 largely influenced by the recruitment deviations component

Figure 16

Model Consistency

Retrospective Analysis

- Five-year peel
- Helps evaluate the effect of the final year on model results
- Patterns can indicate model misspecification or temporal dynamics
- Evaluated visually and quantitatively
 - Mohn's Rho
 - Hurtado Ferro et al (2015) "Rule of thumb"
 - 0.15 0.20 for longer-lived species

Predictive Skill

Retrospective Forecasting

- Based on retrospective analysis
- Model-based hindcasts to five-year peels
- Evaluated visually and quantitatively
 - Forecast bias corresponding to Mohn's Rho
 - Hurtado Ferro et al (2015) "Rule of thumb"
 - - 0.15 0.20 for longer-lived species

Sensitivity Runs

2017 Southwest FL Region MRIP Data

Projection

SDC

Evaluate the impact of the elevated MRIP landings and discard data in 2017 for the SW region of Florida (TOR #1 sub-point)

2017	SW FL	Total
Landings	304,551	1,550,296
Discards	114,382	2,274,882

2017	SW FL	Total
Landings	44,750	1,290,495
Discards	33,064	2,191,679

2017 SW FL Region MRIP Data

SDC

Uncertainty

- Impacts to the model were negligible
- The observed variability in the data is reflective of catch estimates in a large region of mostly unfavorable YTS habitat.
- Approved for use during S64 DW
- The 2017 MRIP data were not altered in the IBM.

ty Uncertainty

SDC

MRIP CPUE Index of Abundance

Catch Per Angler

Catch Per Trip

- Catch per angler was consistent with SEDAR 27A (2012) but the intent was to use 'catch per trip' (see SEDAR64-DW-09)
- A sensitivity run with the MRIP CPUE index configured as total catch per trip was performed to evaluate any potential changes in model results and to help inform discussions during future assessments.

MRIP CPUE Index of Abundance

SDC

 Reference points remained unchanged, and results were mostly within uncertainty bounds.

Projection

 Resulted in a reduction in estimated scale from 2014 – 2020 and indicated that the stock may be approaching the target SSB and the MFMT

S64 Interim Analysis: Yellowtail Snapper Uncertainty

Markov Chain Monte-Carlo

- Generate posterior distributions of model parameters and derived quantities
 - R0, SSB0, steepness, SSB₂₀₂₀, F_{2020} , $F_{30\% SPR}$, SSB_{F30\% SPR}, Yield at $F_{30\% SPR}$
- Two chains
 - 5,000 iterations saved from the 10,000,000 performed
 - Burn-in set at 1,000
 - 2,000 iterations remained for each chain
- Convergence
 - Gelman and Rubin's (1992) potential scale reduction factor (PSRF)
 - Visual inspection of trace plots

Figure 28 a-d

Sensitivity Uncertainty SDC Projection

Stock Status Determination Criteria (Table 15)

Criteria	Definition	Value
MFMT (F _{30%SPR}) Maximum Fishing Mortality Threshold	The fishing mortality rate associated with 30% SPR and the proxy used for F _{MSY}	0.429 yr ⁻¹
P* = 0.375	The fishing mortality rate associated with the 37.5 th quantile of F _{30% SPR}	0.418 yr⁻¹
F _{current}	The geometric mean of F on age-4 fish for 2018 - 2020	0.292 yr⁻¹
MSST (Minimum Stock Size Threshold)	0.75*SSB _{F30%SPR}	3,167,807 lbs.
SSB _{F30%SPR}	The estimated spawning stock biomass associated with F at 30% SPR	4,223,743 lbs.
SSB _{current}	The geometric mean of SSB for 2018 - 2020	6,195,718 lbs.
Equilibrium OFL (Overfishing Limit)	Equilibrium Retained Yield at MFMT	3,498,908 lbs.
Equilibrium ABC (Acceptable Biological Catch)	Equilibrium Retained Yield at P* = 0.375	3,407,637 lbs.

S64 Interim Analysis: Yellowtail Snapper Projections

Projections

Deterministic projections were run to estimate SSB and yield under multiple constant F and constant catch scenarios (TOR #2 sub-point).

- Structure and parameters of the projection model same as assessment model.
- Recruitment for first year of projection based on S-R relationship as estimated by the IBM (17.792 million fish)
- An iterative method (provided by the SEFSC) specifies fishing mortality rates for each fleet per year (2021 2121). Fleet allocations are kept constant each year according to those in the SA (52.56% commercial and 47.44% recreational).

Constant F Projection Scenarios

Sensitivity

Uncertainty

SDC

Projection

1. $F_{30\% SPR} = 0.429$

2. $F_{P^*=0.375} = 0.418$

TION CON

Constant F Projections: Recruitment (millions)

Uncertainty

SDC

Projection

Sensitivity

Constant F Projections: SSB (million lbs)

Uncertainty

SDC

Projection

Sensitivity

THE CONSTRUCTION CONTRACTOR

SDC

Projection

Uncertainty

Sensitivity

61

Sensitivity *Uncertainty*

Projection

SDC

Constant F Scenarios: Projected Retained Yield (lbs)

				ABC=ACL		
Year	F _{30%SPR} (OFL)	P* = 0.375 (ABC)	ABC/OFL	Com ACL (52.56%)	Rec ACL (47.44%)	
2021	2021 4,765,705 4,670,681		98.01%	2,454,911	2,215,771	
2022	4,207,390	4,152,787	98.70%	2,182,708	1,970,079	
2023	3,922,267	3,887,251	99.11%	2,043,149	1,844,102	
2024	3,773,583	3,748,639	99.34%	1,970,295	1,778,343	
2025	2025 3,684,061 3,664,9		99.48%	1,926,322	1,738,658	
2026	2026 3,624,751 3		99.58%	1,897,173	1,712,355	
2027	7 3,584,330 3,571,596		99.64%	1,877,241	1,694,355	
2028	3,556,683	3,545,663	99.69%	1,863,607	1,682,056	
2029	3,537,757	3,527,977	99.72%	1,854,312	1,673,665	
2030	3,524,780	3,515,691	99.74%	1,847,857	1,667,834	
2031	3,515,862	3,507,371	99.76%	1,843,483	1,663,888	
3 yr Avg	4,298,454	4,236,906		2,226,923	2,009,984	
5 yr Avg	4,070,601	4,024,868		2,115,477	1,909,391	
Equil Catch	3,468,661			1,823,128	1,645,533	

62

SDC

Projection

Uncertainty

Sensitivity

Constant Catch Scenarios: Fishing Mortality Rates

SDC

Projection

Uncertainty

Sensitivity

Constant Catch Scenarios: SSB (million lbs)

Uncertainty

Sensitivity

SDC

Projection

Constant Catch Scenarios: Recruitment (millions)

SDC

Projection

Uncertainty

Sensitivity

Management History: SAFMC

- Snapper-Grouper FMP (8/31/1983)
 - 12" (305 mm) TL minimum size limit for commercial and recreational fisheries
 - Florida state waters regulation enacted 7/1/1985
- Amendment 4 (1/1/1992)
 - Aggregate daily bag limit of 10 snappers for recreational fishery
 - Florida state waters regulation enacted 12/1/1986
- Amendment 11B (12/2/1999)
 - MSY-proxy set as 30% static SPR; OY-proxy is 40% static SPR
- Regulatory Amendment 15 (9/12/13)
 - OY = ACL = ABC
- Regulatory Amendment 21 (11/6/2014)
 - Modified MSST to be 75% of the SSB_{MSY}

Management History: GMFMC

- Reef Fish FMP (11/8/1984)
- Reef Fish Amendment 1 (2/21/1990)
 - 12" (305 mm) TL minimum size limit for commercial and recreational fisheries
 - Aggregate daily bag limit of 10 snappers for recreational fishery
- Reef Fish Amendment 48 (6/8/2022)
 - MFMT: F_{30%SPR}
 - MSST: GMFMC currently defers to SAFMC
 - OY: 90% of the MSY or MSY proxy

Model Estimated MRIP Landings in Pounds

Figure 7. Landings estimates of Yellowtail Snapper by year: a) yearly average weight (lbs./#) of estimated landed Yellowtail Snapper (in pounds); b) estimated landings in weight (pounds) by year; c) estimated landings in number (whole fish) by year.

Landings by Fleet in Pounds

Year	Commercial	Headboat	MRIP	Total
2010	1,693,953	89,739	978,430	2,762,122
2011	1,893,544	92,552	943,810	2,929,906
2012	2,107,291	121,417	972,774	3,201,482
2013	2,061,143	114,676	1,532,100	3,707,919
2014	2,043,260	177,331	1,998,309	4,218,900
2015	2,197,954	177,597	1,391,931	3,767,482
2016	2,314,905	188,058	1,522,151	4,025,114
2017	2,820,426	117,929	1,880,002	4,818,357
2018	1,988,139	104,935	1,521,940 *	3,615,014
2019	2,205,944	235,374	872,478 *	3,313,796
2020	1,408,072	147,282	1,433,681 *	2,989,035

*MRIP Public Query

Table 1. Commercial landings (pounds, metric tons) in Florida by region for years 2018 – 2020.

Landing	s (whole lbs.)					
Year	Northwest	Southwest	Keys	Southeast	Northeast	Total
2018	29	20,996	1,908,453	58,538	123	1,988,139
2019	41	21,669	2,098,050	85,988	196	2,205,944
2020	25	12,443	1,339,926	55,507	171	1,408,072
Landing	s (mt)					
Year	Northwest	Southwest	Keys	Southeast	Northeast	Total
2018	0.013	9.524	865.659	26.552	0.056	901.804
2019	0.019	9.829	951.659	39.004	0.089	1,000.598
2020	0.011	5.644	607.780	25.178	0.078	638.690

Table 4. MRIP landings (thousands of fish) and releases (thousands of fish) in Florida by region for years 2017 – 2020.

Landings (000s)						
Year	Northwest	Southwest	Keys	Southeast	Northeast	Total
2017	0.000	304.551	839.815	400.493	5.437	1,550.296
2018	0.000	74.051	658.794	960.244	3.462	1,696.551
2019	0.000	76.392	478.745	250.499	0.000	805.637
2020	0.000	41.747	737.861	730.010	0.249	1,509.868
Live Releases (000s)						
Year	Northwest	Southwest	Keys	Southeast	Northeast	Total
2017	0.000	114.382	1,669.138	487.509	1.968	2,272.998
2018	0.456	50.630	1,513.459	1,151.028	45.240	2,760.814
2019	0.000	47.969	1,081.940	471.446	0.000	1,601.356
2020	0.000	96.067	1,982.903	433.940	1.921	2,514.831

Interim Base Model Configuration

Fleets

- Commercial (Updated)
 - Landings (mt) and discards (numbers)
- Headboat (Updated)
 - Landings and discards (numbers)
- MRIP (Charter, Private, Shore modes; Updated)
 - Landings and discards (numbers)

Surveys (No change)

- Commercial CPUE
 - retained lbs/hook hour
- RVC
 - Juvenile/subadult
 - Adult
 - number of fish/diver 'cylinder'
- MRIP CPUE
 - total catch/angler (numbers)

Interim Base Model Configuration

Length Composition Data

(No change)

- Commercial
 - Landings and discards
- Headboat
 - Landings
- MRIP
 - Landings
- Headboat/MRIP Discards
 - Same length compositions
- RVC

- Juvenile/Subadult
- Juvenile/SubadAdult

<u>Conditional Age-at-Length Data</u> (No change)

- Commercial Landings
- Headboat Landings
- MRIP Landings
- Fishery-independent sources

Constant F Scenarios: Projected SSB (lbs)

Year	F _{30%SPR} (OFL)	P* = 0.375 (ABC)
2021	5,815,920	5,815,920
2022	5,114,123	5,151,469
2023	4,761,781	4,817,359
2024	4,577,056	4,641,695
2025	4,465,149	4,535,036
2026	4,391,294	4,464,554
2027	4,341,183	4,416,625
2028	4,307,012	4,383,909
2029	4,283,621	4,361,466
2030	4,267,593	4,345,989
2031	4,256,592	4,335,363

<u>Constant F Scenarios: Projected Recruitment (numbers)</u>

Year	F _{30%SPR} (OFL)	P* = 0.375 (ABC)
2021	17,792,000	17,792,000
2022	17,467,400	17,486,600
2023	17,274,100	17,306,200
2024	17,162,900	17,202,700
2025	17,091,800	17,136,600
2026	17,043,200	17,091,400
2027	17,009,500	17,060,100
2028	16,986,100	17,038,300
2029	16,970,000	17,023,200
2030	16,958,800	17,012,800
2031	16,951,100	17,005,600

Additional Constant F Projection Scenarios

1. 90% of $F_{30\% SPR} = 0.377$

2. 75% of $F_{30\% SPR} = 0.314$

Additional Constant F Scenarios: Retained Yield (mill lbs)

Additional Constant F Projections: SSB (million lbs)

Additional Constant F Projections: Recruitment (millions)

Additional Constant F Scenarios: Retained Yield (Ibs)

Year	90% F _{30%SPR}	75% F _{30%SPR}
2021	4,287,982	3,665,668
2022	3,920,629	3,503,435
2023	3,732,763	3,431,880
2024	3,635,227	3,400,873
2025	3,576,373	3,384,921
2026	3,537,220	3,374,999
2027	3,510,131	3,367,497
2028	3,491,446	3,362,246
2029	3,478,436	3,358,933
2030	3,469,424	3,356,297
2031	3,463,220	3,354,276
3 yr Avg	3,980,458	3,533,661
5 yr Avg	3,830,595	3,477,355

