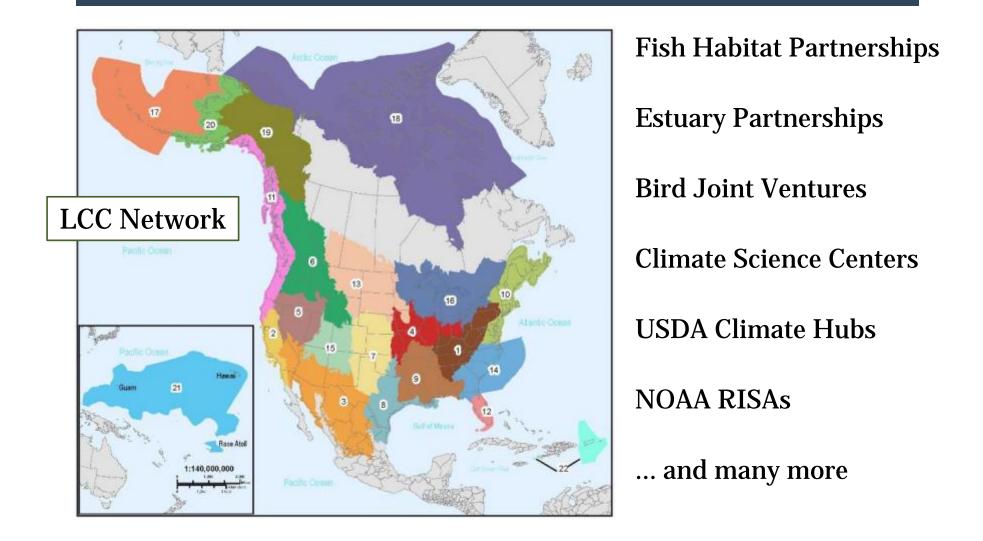


The South Atlantic Conservation Blueprint: From planning to action

Rua Mordecai, Science Coordinator

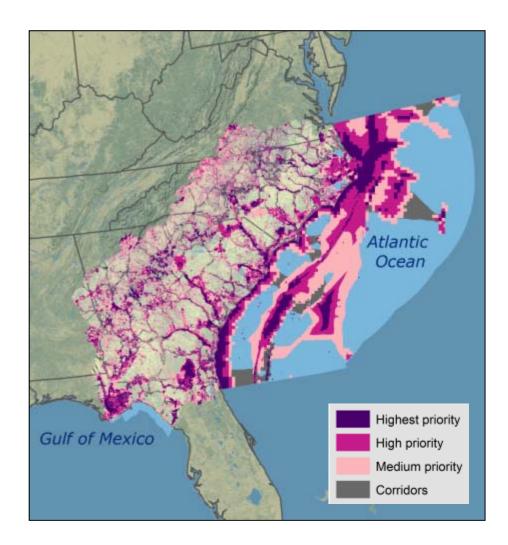


5 - 17 - 2017

Plan for this morning

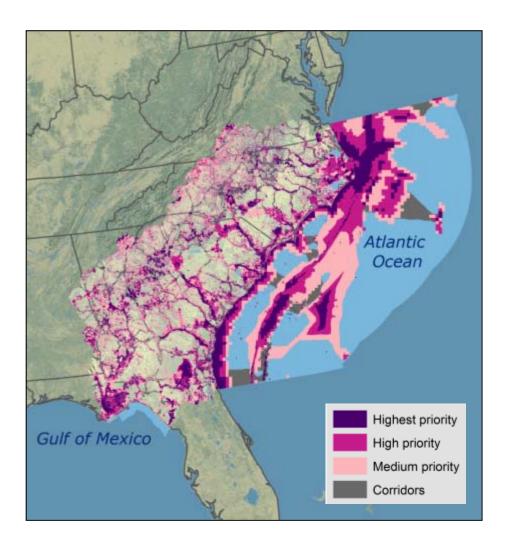
- Intro to South Atlantic Conservation Blueprint
- Discussion and review of:
 - Spatial priorities
 - Blueprint implementation strategy
- Break
- Ecopath progress
- Ecospace progress

Part of a larger network

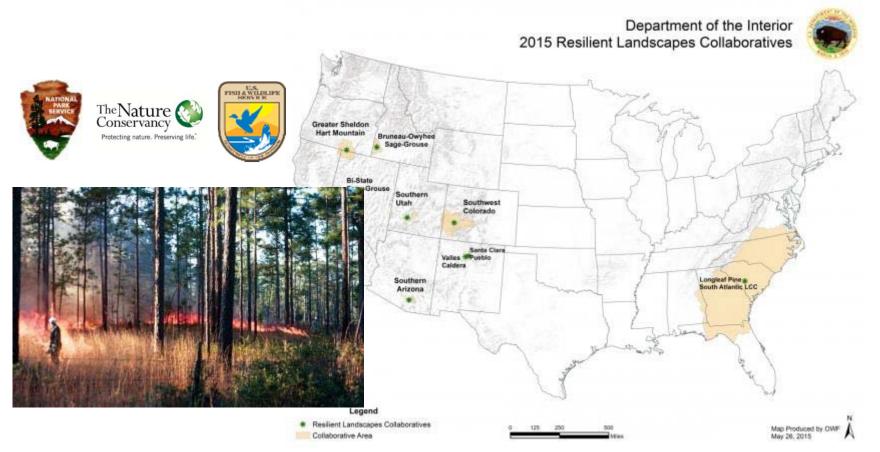

How is your cooperative governed?

What does your cooperative do?

Our mission


 To facilitate conservation actions that sustain natural and cultural resources, guided by a shared adaptive blueprint

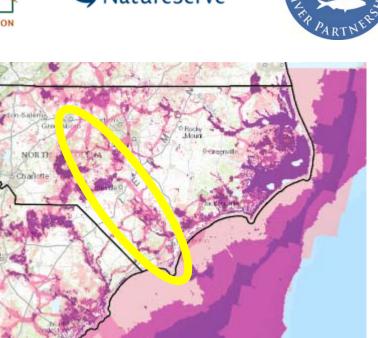
What your cooperative do?

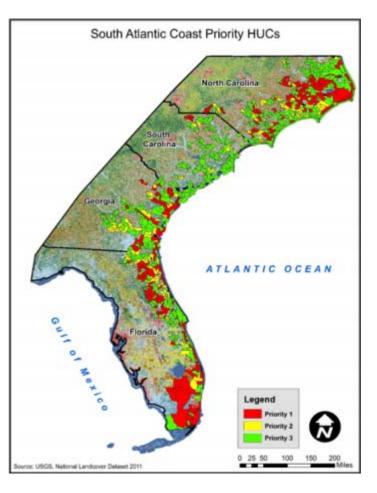

What is the Blueprint?

 A living spatial plan prioritizing opportunities for shared conservation action in the face of future change

How is the Blueprint being used?

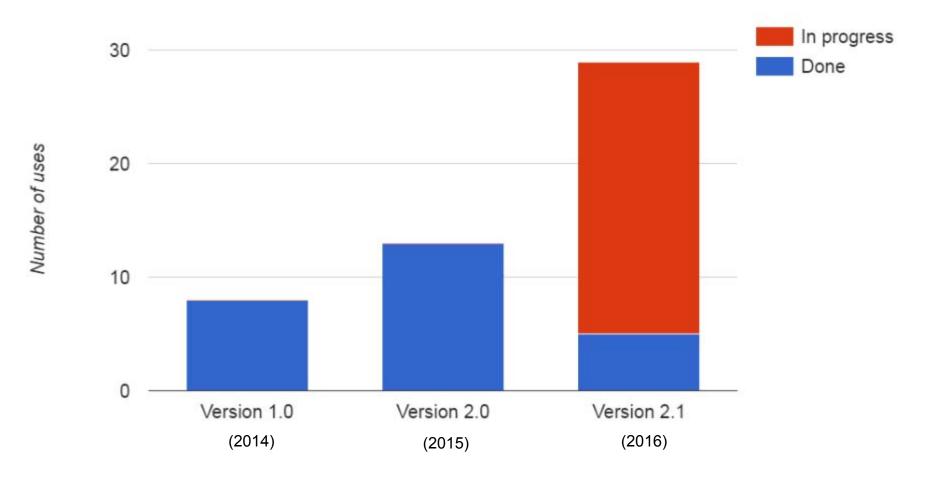
- Amplify the impact of existing efforts
 - Bring a landscape perspective to local actions
 - Compete for conservation dollars


7


How is the Blueprint being used?

- Anticipate and plan for change
 - Preparing for major disasters
 - Land protection planning

How is the Blueprint being used?


- Adapt to change through conservation action
 - Find the best places to work and partner
 - Implement systems-level solutions

4 Dam Removals on Little River

and Densons Creek, Troy NC

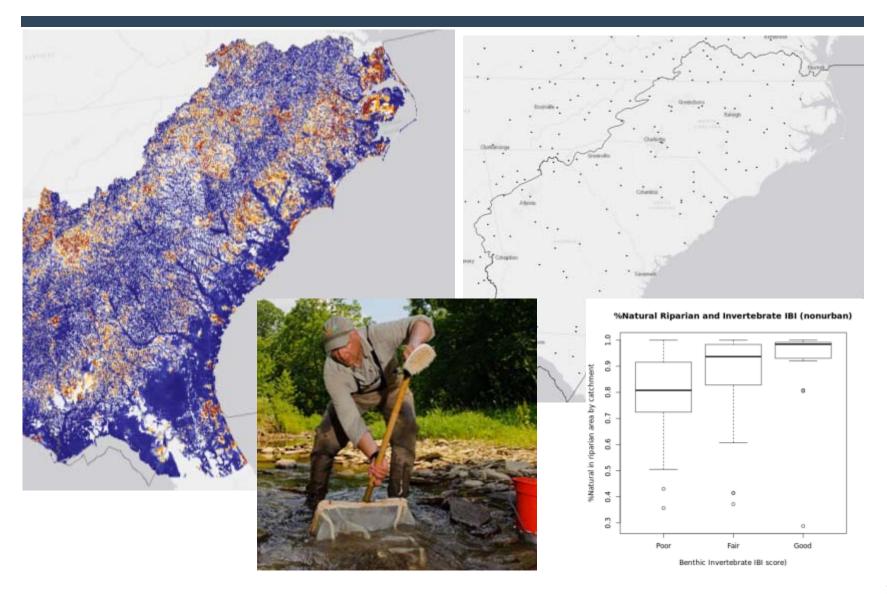
Blueprint use by version

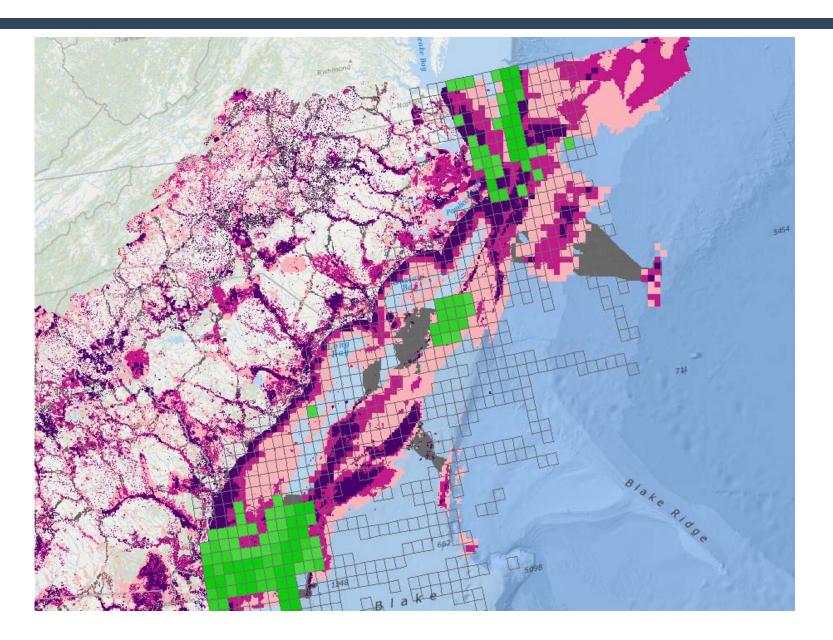
Steps in the Blueprint

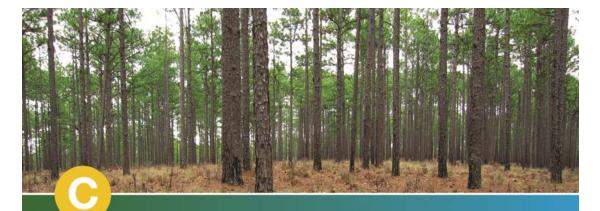
- Indicators
- The State of the South Atlantic
- The Blueprint

Indicators

• Integrity of natural resources


• Integrity of cultural resources


Indicator criteria


- Ecological
- Practical
- Social

Testing indicators

Spring sea turtle sightings vs Blueprint 2.2

State of the South Atlantic 2015

Understanding our living landscapes

a da

The State of the South Atlantic

State of the South Atlantic

south Atlantic

South Atlantic ecosystem health scores

Overall, the South Atlantic scored a C. Piedmont areas scored the lowest, likely due to impacts from their major urban megaregions. The Marine region scored the highest; however, it did not include fishing impacts. The Coastal Plain scores were in the middle. These scores show that, while the South Atlantic is not completely healthy, there's hope for making future improvements.

North Piedmont: Home to Charlotte, Raleigh, and large areas of upland hardwood forest. People who live and work in urban areas will help decide the future of this region.

South Piedmont: D Home to Atlanta and diverse watersheds draining into the Atlantic and Gulf. Balancing water needs for people and species continues to be a challenge.

North Coastal Plain: O Home to the Outer Banks and extensive estuaries. Sealevel rise is predicted to heavily impact this particularly flat region.

Central Coastal Plain: 1 Home to Wilmington, Myrtle Beach, and large protected wetland areas. Sea-level rise, tourism, and changing agricultural practices continue to influence ecosystem health.

Scoring & level of confidence

Each data-driven indicator score is based on the percent of an area in good condition, according to the best available science. Though all indicators were measured, some scores were omitted to provide a baseline for future comparison. Confidence values are gualitative estimates of uncertainty based on known issues with indicators and data sources.

3

The State of the South Atlantic

turtles. Ocean acidification and increased energy development are major emerging threats.

important migratory fish, whales, and

protected areas.

floodplains.

South Coastal Plain: 😌 Home to Savannah,

Jacksonville, and a network of protected

barrier islands. Partnerships are working

to conserve this region's largest river

Southwest Georgia and extensive

Marine: 1 Home to rich fisheries, deepwater coral, diverse seabirds, and

Gulf Coastal Plain: 10 Home to rural

conservation lands in the Big Bend of

agriculture continue to impact coastal

Florida. Sea-level rise and upstream

A snapshot in time

This assessment evaluates the ecological integrity of the South Atlantic using natural and cultural resource indicators. The indicators are scored across the entire region, for individual ecosystems, and within subregions following watershed and ecoregional boundaries. All indicators are regularly tested and revised, and this first report uses the best metrics available today.

Toward conservation action

Measuring these indicators communicates the status of the region's land and waters, helping develop a more unified vision for thriving ecosystems that support communities and economies. People and organizations are working together on cross-boundary conservation actions through the South Atlantic LCC to improve ecosystem health in the face of unprecedented changes to the natural world.

forested wetland

150 . 508 6/1

🔕 100-80% in good condition 🕕 39-20% in good condition

(B) 79-60% in good condition

O 59-40% in good condition O Not scored; baseline for future

Floodplain forests, pocosins, & bays

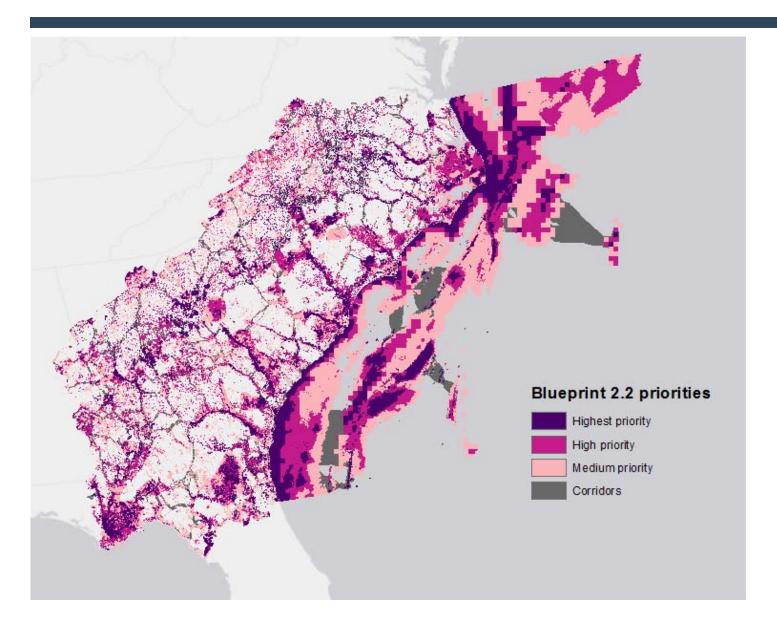
These frequently flooded swamp forests occur across the region on both organic soils, like peatland pocosins and Carolina Bays, and mineral soils, like bottomland hardwood and floodplain forests. Though historically drained for timber production and agriculture, intact forested wetlands support ecological diversity and enhance water quality by filtering polluted runoff.

Interpreting the score

Overall, this ecosystem scored a C. Piedmont areas scored the lowest, mostly driven by poor scores on low road density, the bird index, and aquatic connectivity. The North Coastal Plain scored the highest, mostly driven by better scores on low road density and aquatic connectivity. These results underscore the importance of efforts to restore the altered hydrology of forested wetlands in the South Atlantic.

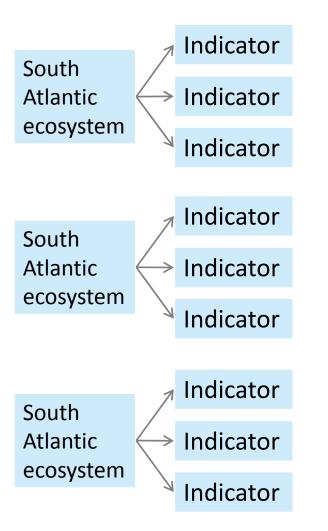
7

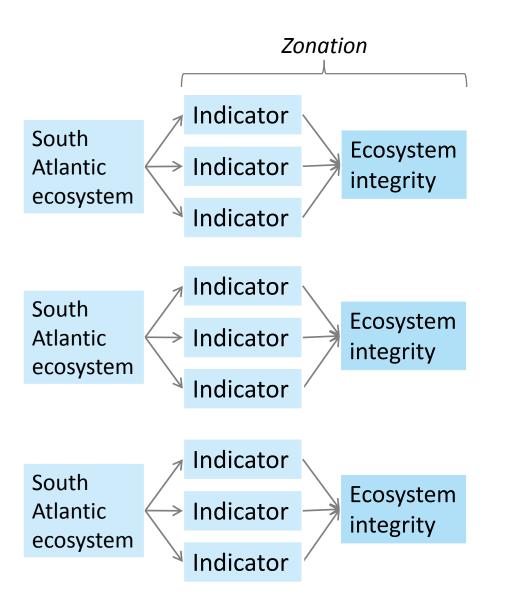
Restoring ancient soils


Thirty years ago, the Eastern North Carolina wetlands that now comprise Pocosin Lakes National Wildlife Refuge were drained for peat mining and agriculture. Catastrophic wildfires burned away feet of the resulting dry organic soil. The Refuge has since restored natural hydrology on nearly 30,000 acres, improving habitat quality, protecting against future fires, and sequestering carbon by rebuilding the soil.

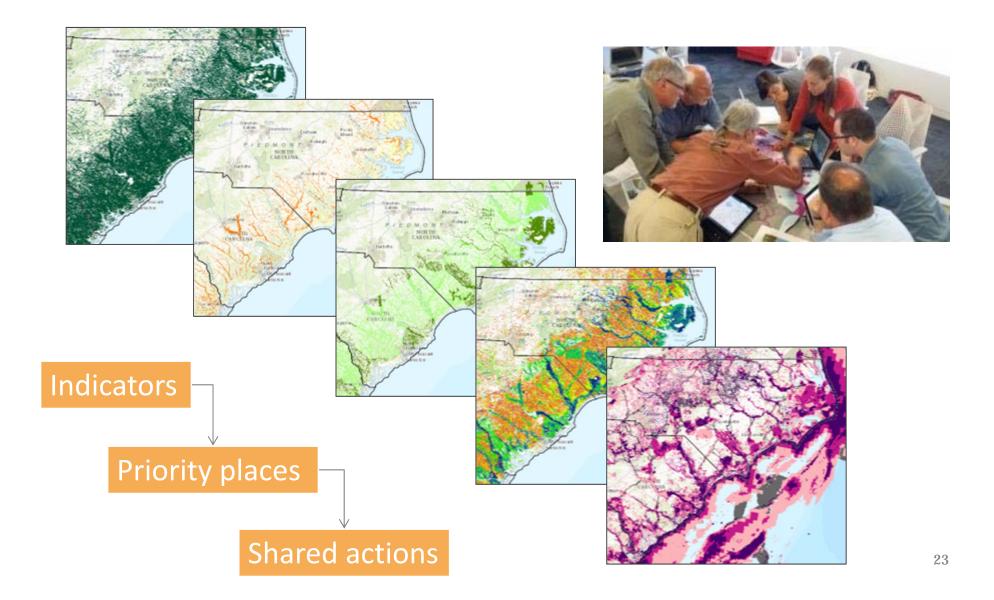
The State of the South Atlantic

18

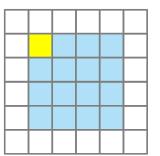

South Atlantic Conservation Blueprint



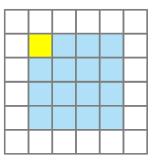
South Atlantic ecosystem


South Atlantic ecosystem

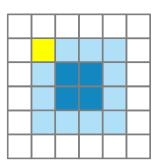
South Atlantic ecosystem

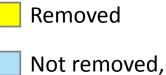


Combining layers


- Objective: Conserve high quality representations of all indicators
- Approach: Zonation iteratively removes pixels that will do the least harm to the full set of indicators

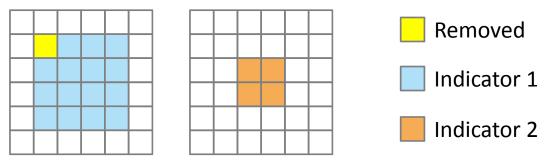
- If all else is equal, removes pixels from layers that are:
 - Closer to the edge

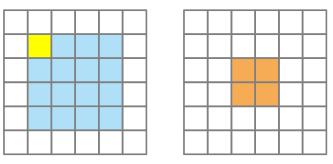




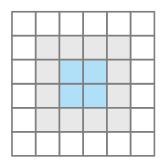
- If all else is equal, removes pixels from layers that are:
 - Closer to the edge

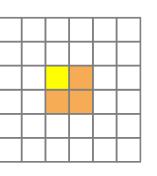
Lower value

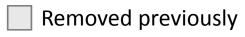



Not removed, lower value

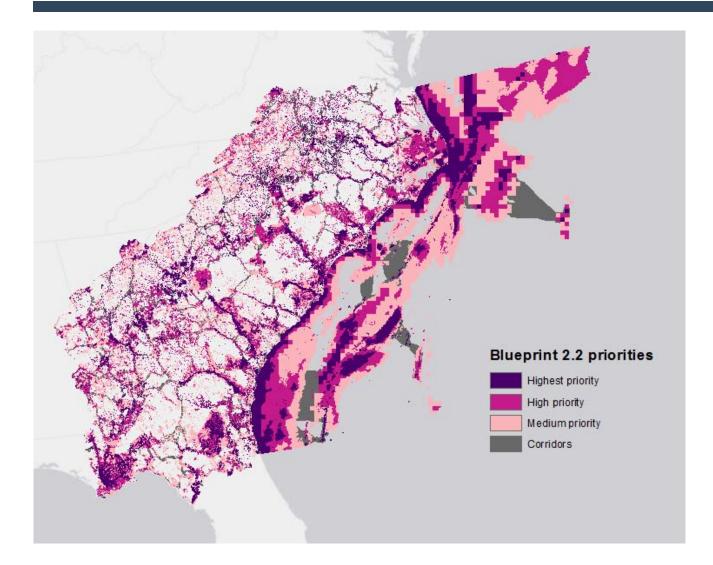
Not removed, higher value

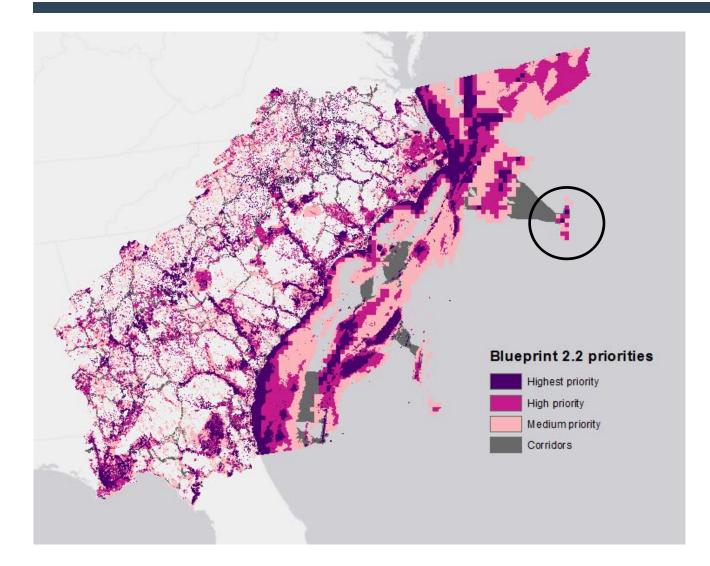

- If all else is equal, removes pixels from layers that have:
 - Larger distributions



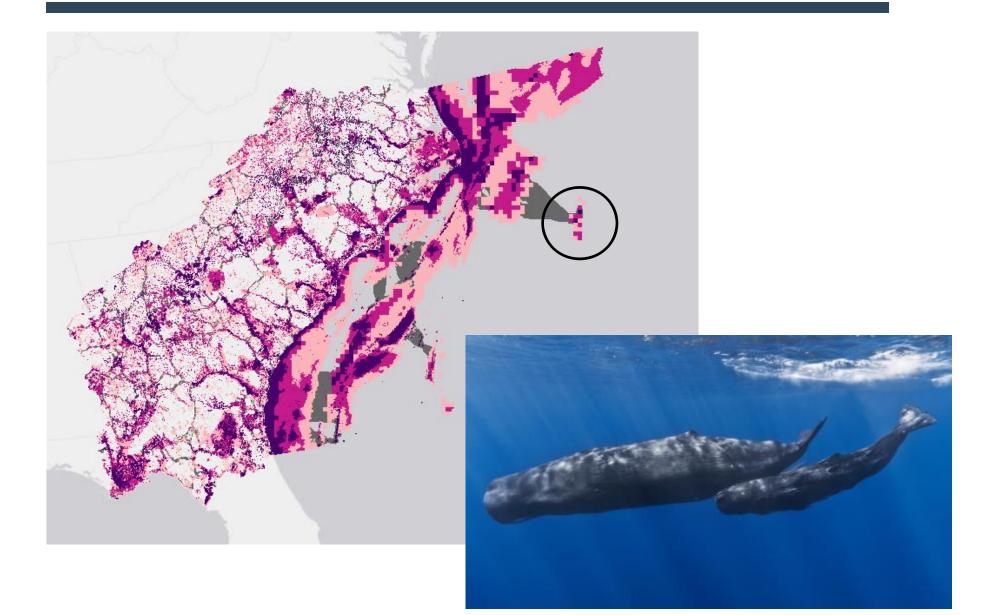

- If all else is equal, removes pixels from layers that have: ٠
 - Larger distributions

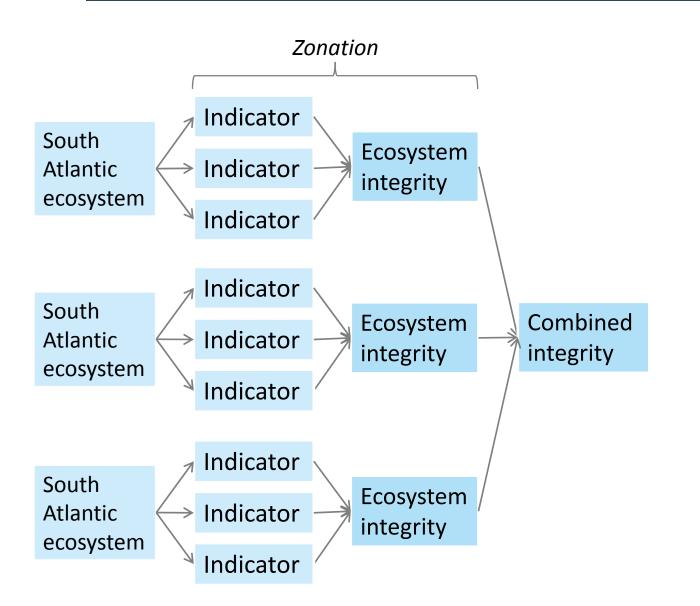
– Less loss

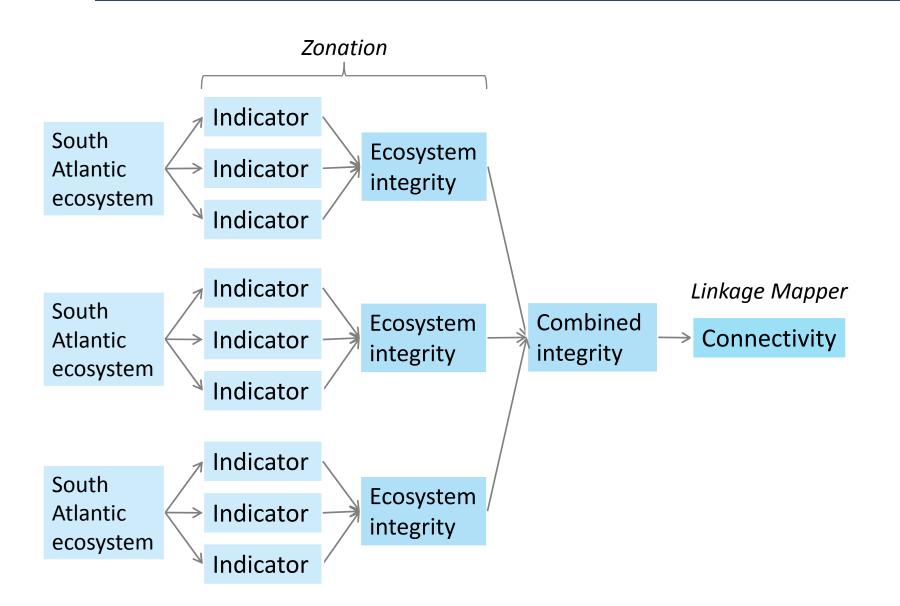


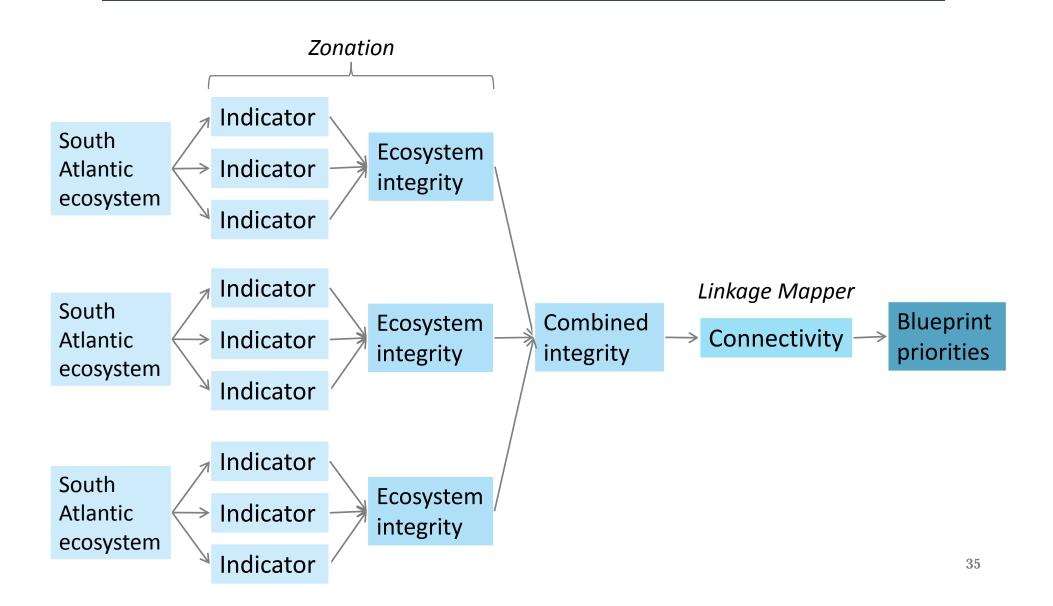


Indicator 2

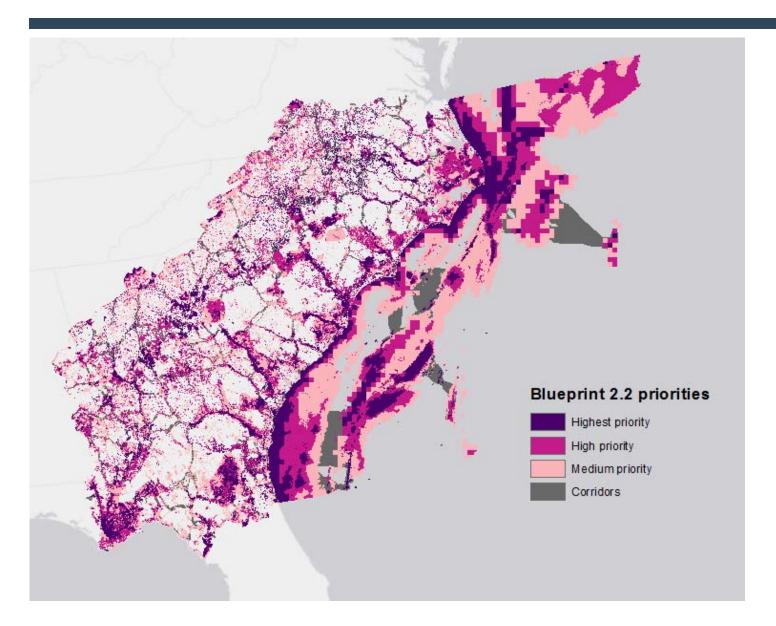

What that means – marine example




What that means – marine example



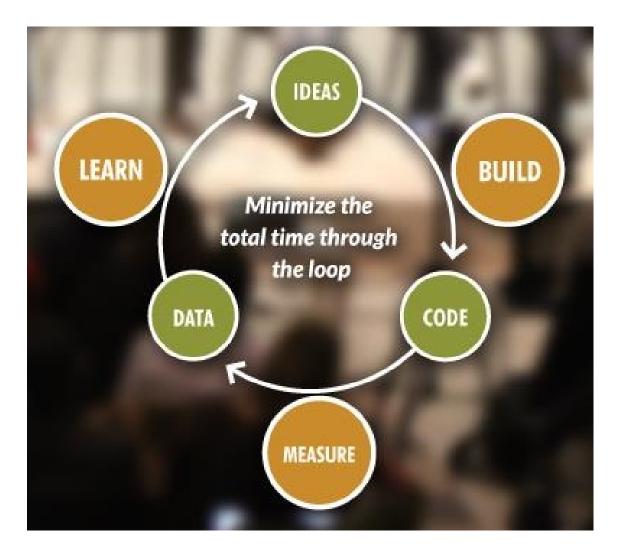
What that means – marine example



Blueprint priorities

- Each blueprint priority class covers a set amount of the South Atlantic area
- Percentages come from the literature and planning documents seeking to balance conservation and human use

South Atlantic Conservation Blueprint

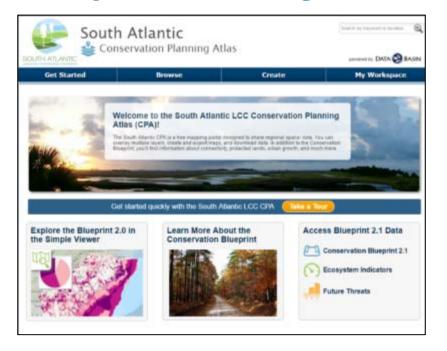


Blueprint major known issues (latest draft)

Blueprint major known issues (latest draft)

- Some aquatic areas, particularly smaller rivers and streams, are overprioritized
- Some aquatic areas important for migratory fish are being under-prioritized in areas far upstream due to issues in the migratory fish connectivity indicator
- Piedmont prairie areas are under-prioritized
- Urban open space is poorly captured in Georgia and South Carolina
- Congaree National Park is under-prioritized. This is likely due to the forested wetland bird indicator under-predicting Swainson's warbler in the area
- The low-urban historic landscapes indicator affects corridors too strongly in some areas

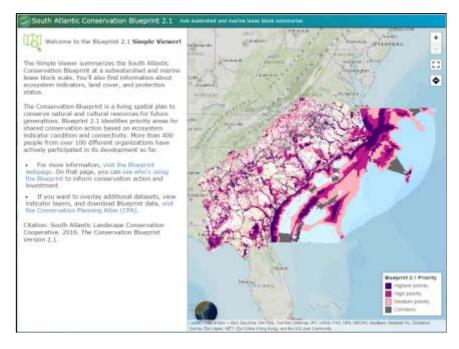
Lean startup

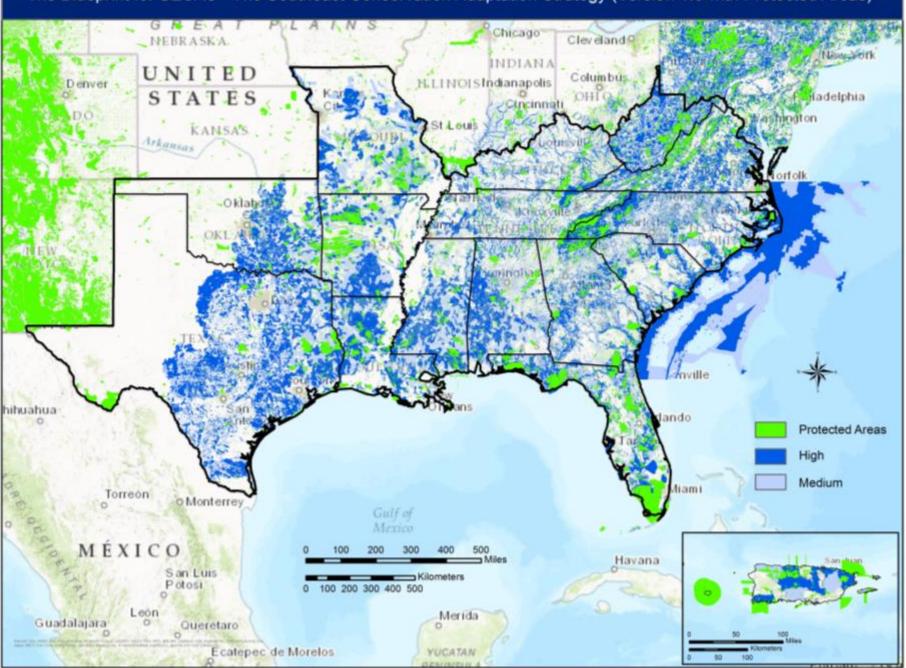

A few improvements in the works

- Finer resolution
- Corridor feasibility using parcel data
- Better models connecting actions and indicators
- Improving indicators for:
 - Estuarine and marine ecosystems
 - Urban areas
 - Historic and other cultural landscapes
- Improving and using targets

Accessing Data

The Conservation Planning Atlas

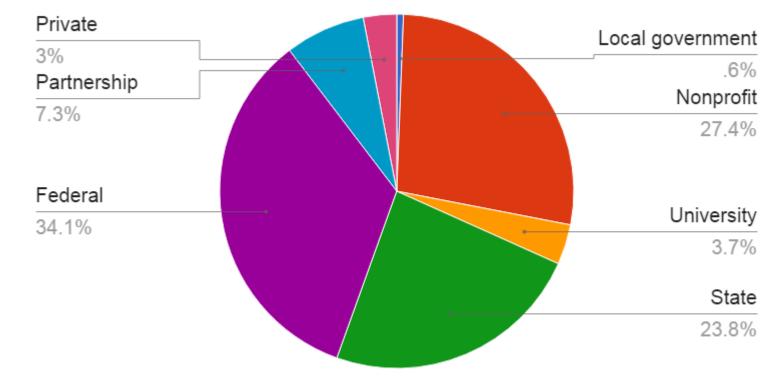

• <u>http://salcc.databasin.org</u>



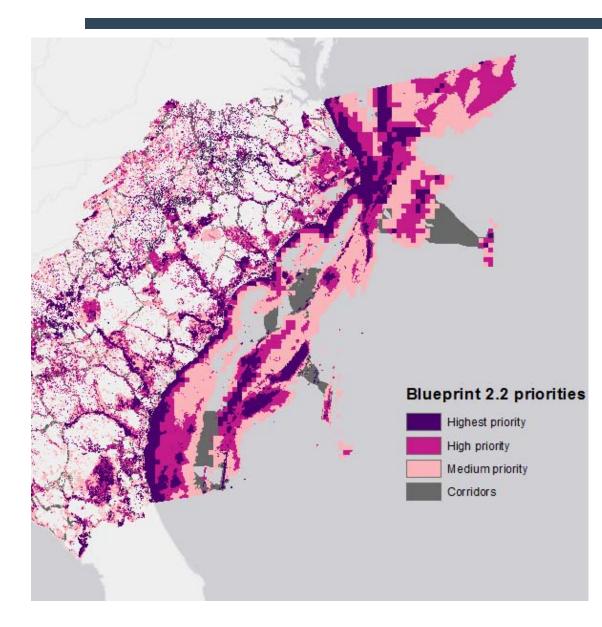
The Simple Viewer

•

http://blueprint.southatlanticlcc.org



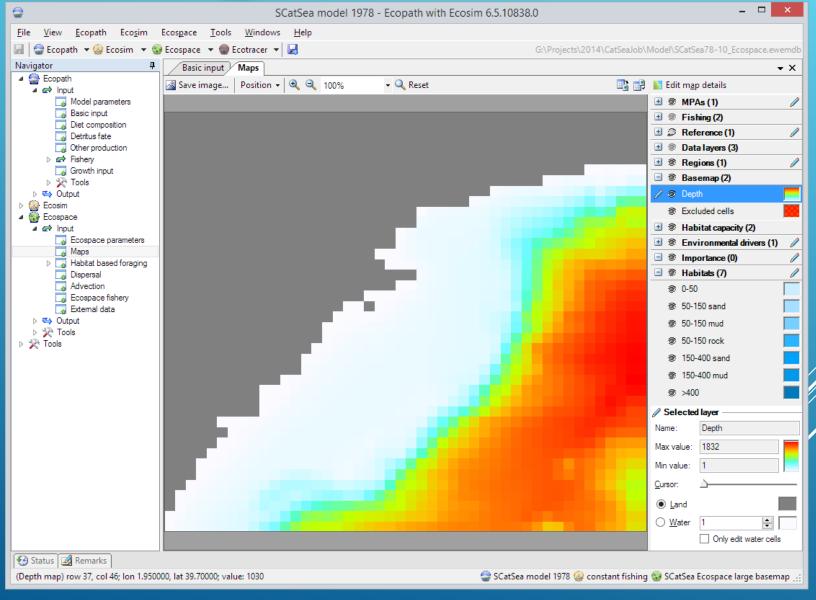
The Blueprint for SECAS - The Southeast Conservation Adaptation Strategy (Version 1.0 with Protected Areas)


Workshop participants

- > 150 participants
- > 60 different organizations

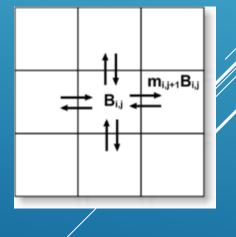
Percent of participants by organization type

Discussion on spatial priorities

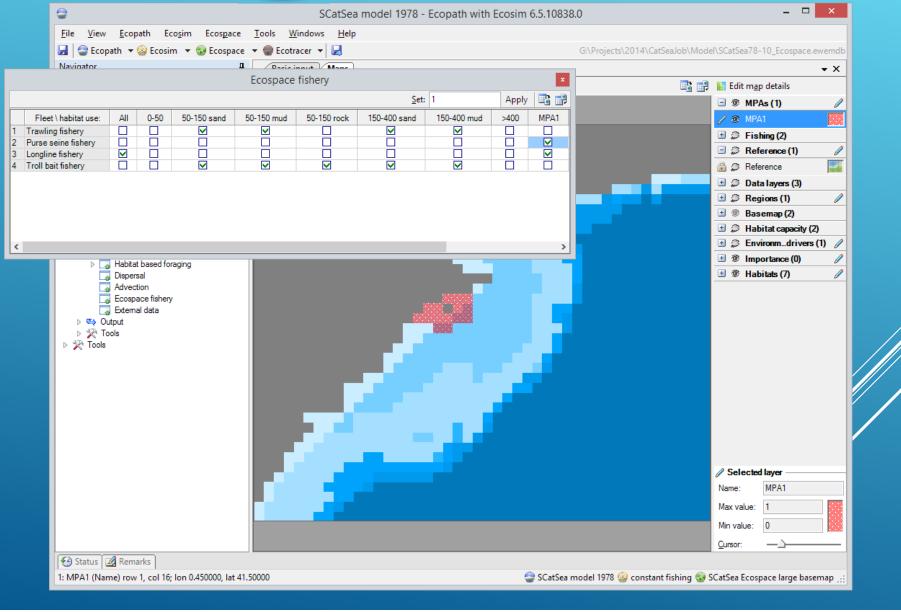

- What areas should be higher priority?
- What areas should be lower priority?
- Other thoughts?

Habitat models for Ecospace

ECOSPACE



Spatial temporal component of EwE, executes Ecosim for every 'water' cell in a grid


Requires extra inputs, related to movement, habitat, fishing, environment

Groups and fleets try to move to nearby optimal conditions

ECOSPACE

ECOSPACE

9	SCatSea model 19	78 - Ecopath with	Ecosim 6.5.1083	8.0			×
<u>File View Ecopath Ecosim Ecospace</u>	<u>T</u> ools <u>W</u> indows <u>H</u> elp						
🛃 🤤 Ecopath 🔻 🍪 Ecosim 💌 🎲 Ecospace	🕶 🍘 Ecotracer 👻 🛃			G:\Projects\2014\(CatSeaJob\Model\SCa	tSea78-10_Ecospace.ew	emdb
Navigator 4	Basic input Maps Run Ecospa	ce				•	• ×
	Distribution of	Map Plot					
Model parameters	Relative biomass	Phytoplankton	Micro-and	Macrozooplankto	Jellvfish	Suprabenthos	ligt
Basic input	O Fishing effort		mesozoo <mark>plankto</mark>	n 📩		×	
Diet composition	⊖ <u>C</u> atch		n				
Other production	Catch/biomass 2 Legend max.		1	6.2	6		
 Fishery Growth input 	Contaminant concentration	Polychaetes	Shrimps	Crabs	Norway lobster	Benthic invertebrates	
⊳ 🔆 Tools	Contaminant conc/biomass	××	×*	**	**	**	
▷ ➡ Output ▷ ∰ Ecosim	Display options		P	A		1 - C	
	Show all	Benthic	Benthopelagic	Mullets	Conger eel	Anglerfish	
⊿ 🖙 Input	Selected groups/fleets: Choose	cephalopods	cephalopods		<i></i>	1	
Las Ecospace parameters	Show single group/fleet:	1 - C	100 C	1	- Contra 199	1 m - 1	
Habitat based foraging		/ Flatfishes	Poor cod	r Juuranila balus	d A duit baixa	/ Dhus whiting	
Advection	19: Adult hake 🗸			Juvenile hake	Adult nake	Blue whiting	
Ecospace fishery	<u>O</u> verlay	- ¹⁰	- ²⁰	<i></i> 0	- ²⁰	*	
External data ⊿ S Output	Show MPAs	7	F	F	1		
Run Ecospace	✓ Show IMB packets	Demersal fishes	Demersal fishes	Demersal fishes	Demersal sharks		
Ecospace results	Labels	(I) 💉	(2)	(3)	<u>~</u>	fishes	
 ▷ X Tools ▷ X Tools 	Show labels	100	1	100	1	1	
	✓ Invert color	European	Sardine adults	Other small	r Horse mackerel	r Mackerel	
	Top - left 🗸 🗸	anchovy		pelagic fishes			
	Run					**	
		Le in	<u> </u>				
	<u>R</u> un Multi-stanza ∨	Atlantic bonito	Swordfish and Tuna	Loggerhead	Audouins gull	Other sea birds	
	Pause Stop	<u> </u>		1	NT .	AT .	
		<u> </u>	1	F	1	1	
		Dolphins	Fin whale	Discards1	Discards2	Detritus	
			10	.A.		A	
				-	-		
		r	P	1	r.	P L	.0%
Status 🖾 Remarks							
1: MPA1 (Name) row 1, col 2; Ion -0.250000, lat 41.50000 😔 SCatSea Ecospace large basemap 💥							

Used, among others, to assess Distribution of marine species and fishing effort Spatial impact of fishing Management options, e.g. impact of MPAs Impact of environmental change (EwE version 6.3+)

Running model has been linked to Marxan & Atlantis Includes an IBM approach

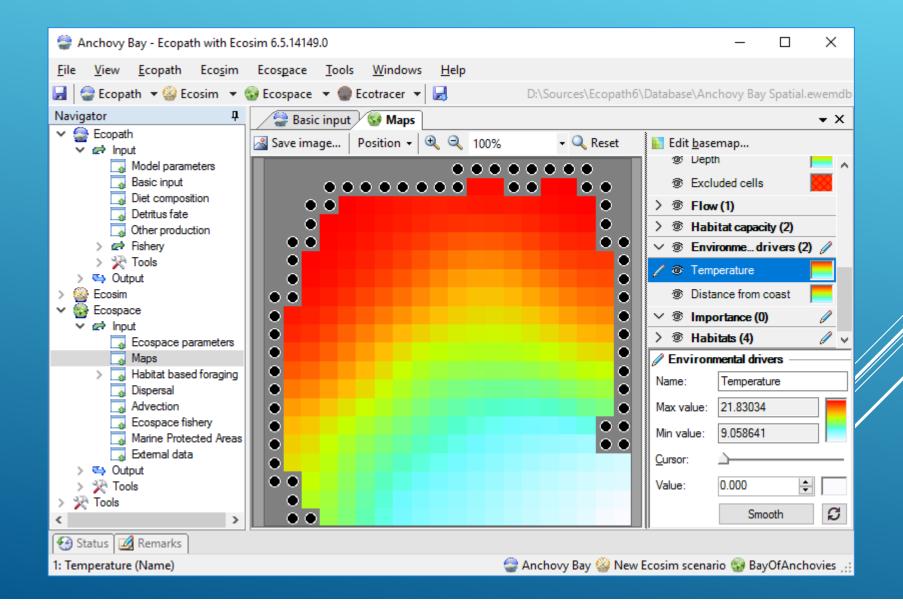
RECENT DEVELOPMENTS IN ECOSPACE

2011 Ecospace had three major limitations

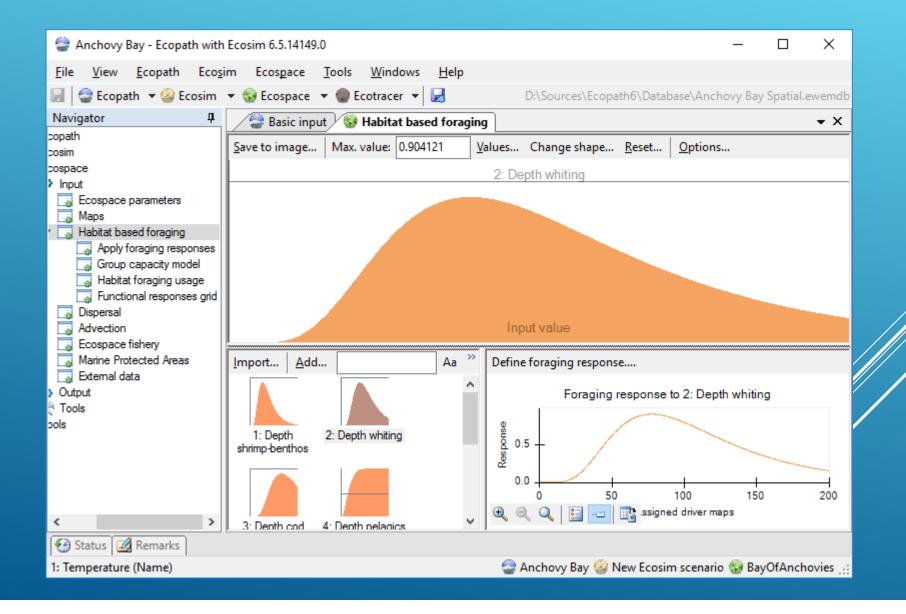
- 1. Unable to represent sub-cell features
- 2. Unable to explicitly incorporate environmental effects on species: "why are the species where they are?"
- 3. Limited facilities to exchange data with the outside world, thus unable to include environmental variability

WHY ARE SPECIES WHERE THEY ARE?

SETTING UP THE HABITAT FORAGING CAPACITY MODEL


1. SELECT GROUP CAPACITY MODEL

😂 Anchovy Bay - Ecopath with Ec	osim 6.5.14149.0	_		×				
<u>F</u> ile <u>V</u> iew <u>E</u> copath Eco <u>s</u> im	Ecos <u>p</u> ace <u>T</u> ools <u>W</u> indows <u>H</u> elp							
🚽 🥥 Ecopath 👻 Ecosim 🔻 🌚 Ecospace 👻 🌑 Ecotracer 👻 🛃 🛛 D:\Sources\Ecopath6\Database\Anchovy Bay Spatial.ewemdb								
Navigator P	Basic input S Group capacity model			→ ×				
📄 Ecopath > 🖙 Input	Habitats 🛵 Environmental responses 🍕 Both		Appl	y 🔤				
> 🖏 Output	Group name Use habitat Use environmental responses Both							
Ecosim	1 Whales □ ✓							
Ecospace	2 Seals							
✓ Input	3 Cod							
Ecospace parameters Maps	4 Whiting □ □ 5 Mackerel □ □							
Maps ✓ → Habitat based foraging	5 Mackerel							
Apply foraging responses	6 Anchovy							
Group capacity model	7 Shrimp							
Habitat foraging usage	8 Benthos □ 9 Zooplankton ✓ □							
Functional responses grid	10 Phytoplankton							
🗔 Dispersal	11 Detritus							
Advection				1				
Ecospace fishery								
🔄 Marine Protected Areas								
🗔 External data								
> 🖏 Output								
> 🎘 Tools								
ኛ Tools								
< >								
🚱 Status 🛛 🛃 Remarks								
1: Temperature (Name) 🚭 Anchovy Bay 🍪 New Ecosim scenario 🌚 BayOfAnchovies 🛒								


2. DEFINE ENVIRONMENTAL DRIVERS

🤤 A	nchovy B	ay - E	copath v	vith Eco	osim 6.5.14149	.0					_		×
File	View	Ecop	ath Eo	cosim	Ecospace	Tools	Windov	vs Help					
	Ecopat	th 🔻 (😺 Ecosi	m 💌	당 Ecospace	👻 💮 E	cotracer	🗕 🛃 D:	\Sources\Ecop	ath6\Database\Anch	iovy Bay	Spati	al.ewemdb
Navig	ator	D	efine en	vironm	ental input ma	aps					×		- ×
	Ecopath					•						Α	pply 📑
Ň	🖙 Inpu	t Moc			Name	Drive	capacity	Description	Status	Edit			
		Bas	1		Depth		✓	Depth map (bathymetry)		Add	phi	с	Other
		Diet	2		mperature ice from coast		✓✓			Remove	ncy	/	mortality
		Deti	3	Distan	ce from coast	l	× 1			Nemove	400)	
) 🛃 (Oth Fish								Кеер	350		
	> 🛠	Too								Order			
	🔄 Outp	ut											
2 🦉	Ecosim Cospac									Move up			
· 👻										Move down			
		Eco									500		
		Map											
		Hab Disp											
		Adv											
		Eco											
		Mar											
, s		Exte vrt							ОК	Cancel			
Ś	120.								UK	Cancer			
· ·	Tools	_									.::		
<				>	<								>
🚱 St	tatus 🗾	Rema	rks										
1: Tem	nperature	(Nam	e)					🝚 An	chovy Bay 🎯 I	New Ecosim scenario	o 💮 Bay	OfAn	chovies 🔐

3. POPULATE ENV. DRIVER MAPS

4. DEFINE ENV. RESPONSE CURVES

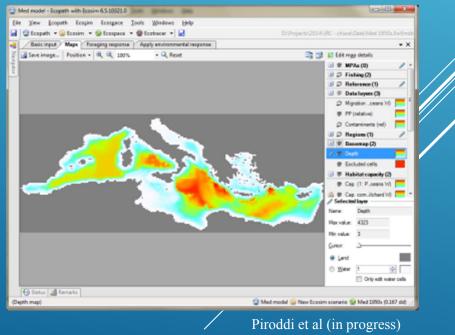
5. CONNECT GROUPS, DRIVERS AND RESPONSES

🤤 A	nchovy	Bay - Ecopa	th with E	cosim 6.5.1414	9.0		– 🗆 X				
<u>F</u> ile	<u>V</u> iew	<u>E</u> copath	Eco <u>s</u> im	Ecos <u>p</u> ace	<u>T</u> ools	Windows	<u>H</u> elp				
Foragir	ng respor	nse for '2: De	epth whit	ing'		· · ·		×			
Envir	onmenta	al effect on g	roups —				Foraging response	-			
<u>A</u> vaila	ble groups	3	2	Spatial-temporal (drivers		<u>X</u> min: 0.000 <u>X</u> max: 200.0 <u>D</u> efault X axis				
2	Whales Seals			Depth 2: Seals			Mean:				
	: Cod Whiting Mackere : Anchovy : Shrimp : Benthos	/	2: Seals 4: Whiting Temperature Distance from coast				Driver histogram & response function Response function '2: Depth whiting' Histogram for 'Depth' 0.16 0.14 0.12 0.10 0.8 0.7 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.7 0.7 0.0 0.02 0.00 Map values				
			,		- 1434		ОК				
🧐 s	Status Remarks										
1: Ten	nperature	e (Name)					🍚 Anchovy Bay 🍪 New Ecosim scenario 🎲 BayOfAnchovies _.	÷			

6. CHECK SET-UP AND RUN

9	Anchovy Bay - Ecopath with Ecosim 6.5.14149.0 — 🗆 🗙													
<u>F</u> ile	e	View Ecopath	Eco <u>s</u> ir	n Ecos <u>p</u> ace	<u> </u>	Windo	ows <u>H</u> e	p						
		Ecopath 👻 🍪	Ecosim	🕶 🌚 Ecospac	e 🔻 🌒	Ecotracer	-		D:\So	ources\Ecopath6\	Database\Ancho	ovy Bay	Spatial.e	wemdb
\odot	Ар	ply foraging resp	onses					Ψ×	G	roup capacity mo	del			ųχ
	De	fine environment	al driver r	naps					4	Habitats Env	/ironmental resp	onses	∮r_ Both	>>
Navigator		Group name		Depth	Tempe	erature	Distance	from coast ^	Group name Use habitat			Use environmental res		
t	1	Whales	3: [Depth cod			7: Distar	ice whales	1	Whales				v
	2	Seals	2: De	pth whiting			8: Dista	nce seals	2	Seals				I
	3	Cod		Depth cod	5: Tem	p cold			3	Cod				•
	4	Whiting		pth whiting	6: Tem	o warm			4	Whiting				✓
	5	Mackerel		oth pelagics	5: Tem	p cold			5	Mackerel				9 9
	6	Anchovy		oth pelagics	6: Tem	o warm			6	Anchovy				2
	7	Shrimp		shrimp-benthos					7	Shrimp				9
	8	Benthos	1: Depth	shrimp-benthos				_	8	Benthos				9
	9	Zooplankton							9	Zooplankton				
	10	Phytoplankton						>		Phytoplankton				
	-							-	11	Detritus			L	
		😼 Habitat fora	ging usag	je				→ ×						1
					<u>S</u> et:			Apply						
		Group \ habitat #	All	Coastal	Sand	Rocky	Deep	^						
	6	Anchovy												
	7	Shrimp												
	8	Benthos												
	9	Zooplankto												
	10	Phytoplank												
	11	Detritus	1.000)				×	<					>
	•) Status 🛛 🛃 Rem	narks											
1: T	1: Temperature (Name) 🤤 Anchovy Bay 🍪 New Ecosim scenario 🌚 BayOfAnchovies 💥													

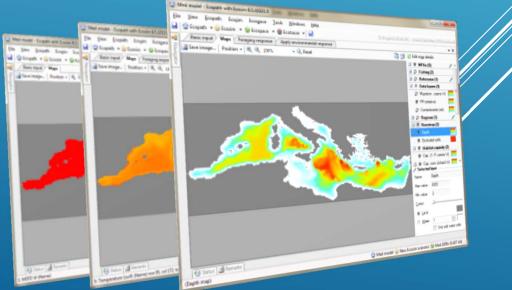
Foraging habitat capacity model case study

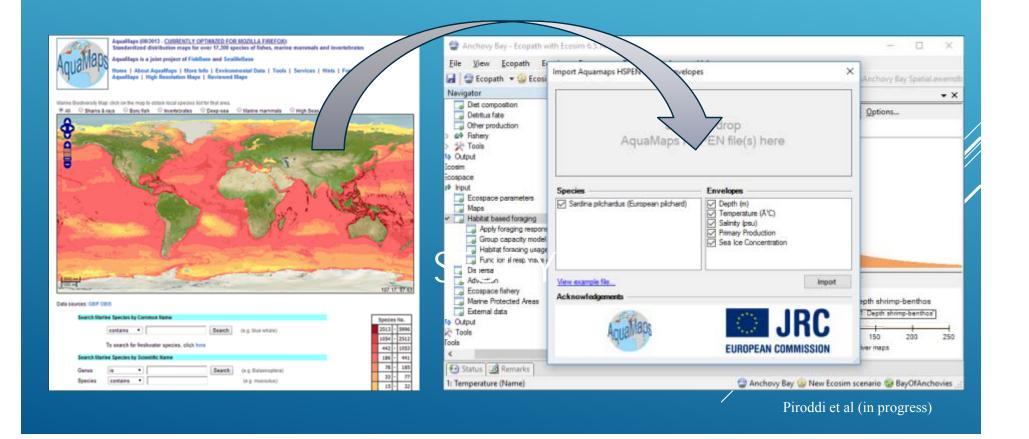

Full Mediterranean EwE model

90+ functional groups, assigned to 4 MSFD zones

Time frame 1950 – 2010

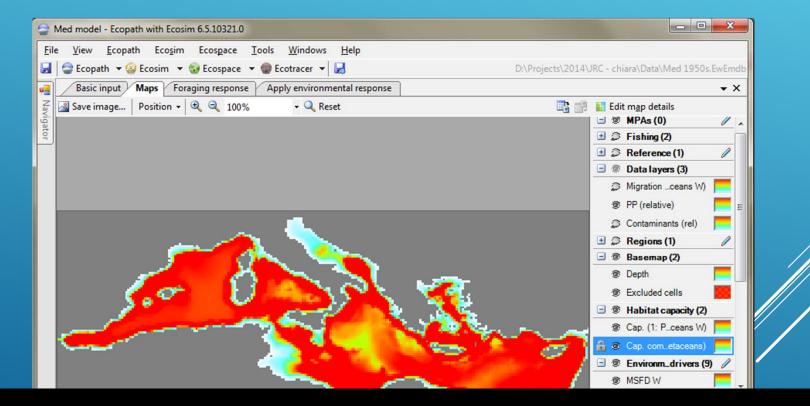
Entire basin at 0.167 dd grid

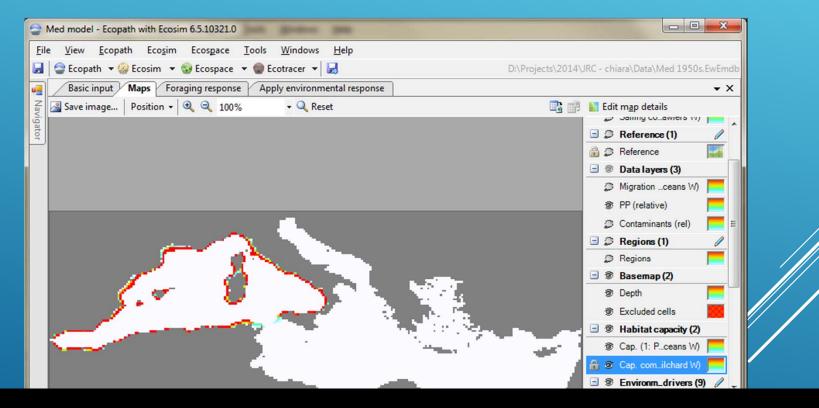



1. Define environmental drivers

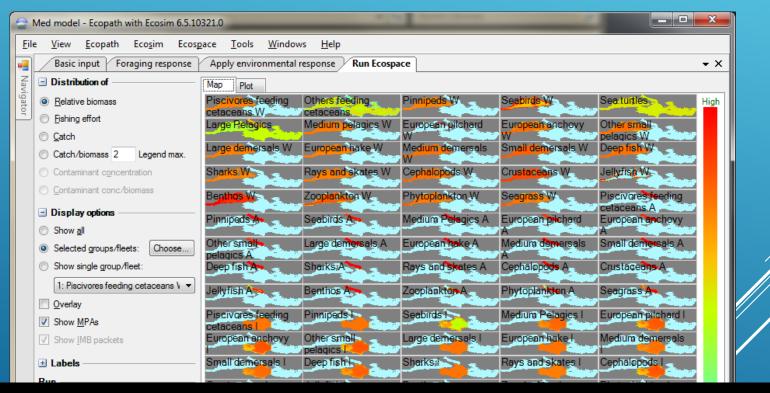
Primary production Salinity (surface and bottom) Temperature (surface and bottom) Depth

MSFD area restrictions


2. Define environmental responses Here we are using a plug-in to import environmental responses from AquaMaps species envelopes

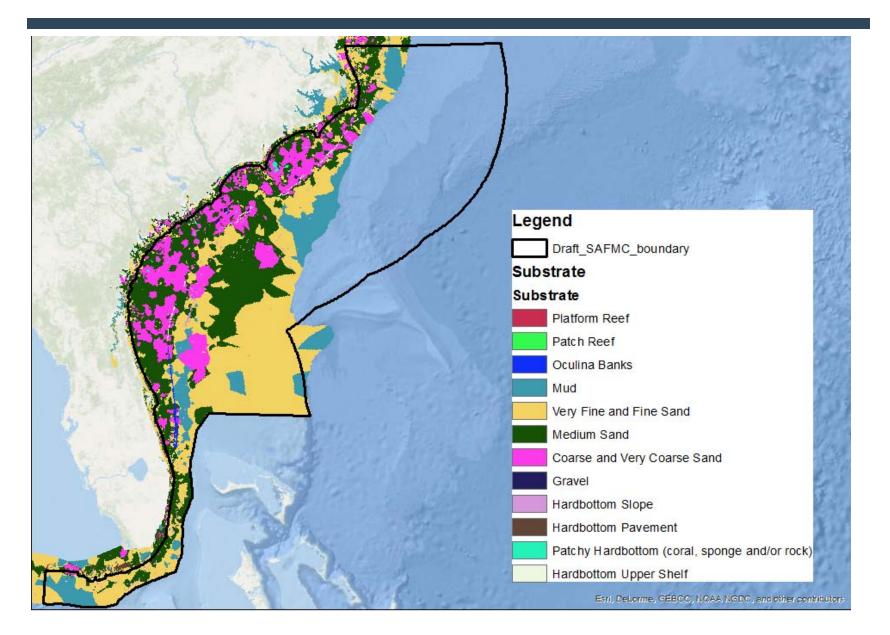

3. Apply drivers and responses

9	Med	d model - Ecopath with Ecosim	6.5.10321.0									
Eil	e	<u>V</u> iew <u>E</u> copath Eco <u>s</u> im	Ecospace <u>T</u> ools <u>W</u>	(indows <u>H</u> e	lp							
		Ecopath 🔻 🍪 Ecosim 💌 🔮	🦲 Ecospace 🔻 🍘 Ecotr	acer 🔻 🛃				D:\Projects\2014\JR	C - chiara\Data\Med 19	950s.EwEmdb		
		Basic input Maps Forag	ing response Apply e	nvironmental	response					- × ↓		
Nav	De	fine environmental input maps	h		-							
Navigator		Group name	Depth	MSFD W	MSFD A	MSFD I	MSFD E	Temperature (surf)	Temperature (bott)	Seagras ^		
R	1	Piscivores feeding cetaceans W	1	1: MSFD								
	2	Others feeding cetaceans	26: Depth (m) Other fee		Apply en	vironmental	response fur	nction		×		
	3	Pinnipeds W		1: MSFD			Aa					
	4	Seabirds W		1: MSFD	<u>Filter</u> : d							
	5	Sea turtles			Deser	8						
	6	Large Pelagics			Respo							
	7	Medium pelagics W		1: MSFD	2: [/					
	8	European pilchard W	8: Depth (m) Sardina pil	1: MSFD	5: [Depth (m) Med	dium pelagics (S	Sarc				
	9	European anchovy W		1: MSFD	8: 0	Depth (m) Sard	dina pilchardus	(EL				
	10	Other small pelagics W		1: MSFD	11:	Depth (m) sm	all pelagics (Mi	cro 8: Depth (r				
	11	Large demersals W		1: MSFD	14:	Depth (m) En	igraulis encrasio	colu 😥 Sardina pilcha				
	12	European hake W		1: MSFD	17:	Depth (m) jelk	yfish (Pelagia n	oct X (Europear pilchard)	ו			
	13	Medium demersals W		1: MSFD	20:	Depth (m) cru	ustaceans (Meg	jan				
	14	Small demersals W		1: MSFD	Concerned in the second		ep fish (Cycloth				// /	
	15	Deep fish W		1: MSFD			erluccius merluc					
	16	Sharks W		1: MSFD		s spar any me						
	17	Rays and skates W		1: MSFD	•	· · · · · · · · · · · · · · · · · · ·						
	18	Cephalopods W		1: MSFD								
	19	Crustaceans W		1: MSFD					OK Cancel			
	20	Jellyfish W	17: Depth (m) jellyfish (1: MSFD						.11		
	101	Death as Jul		1. 10000		1	1					

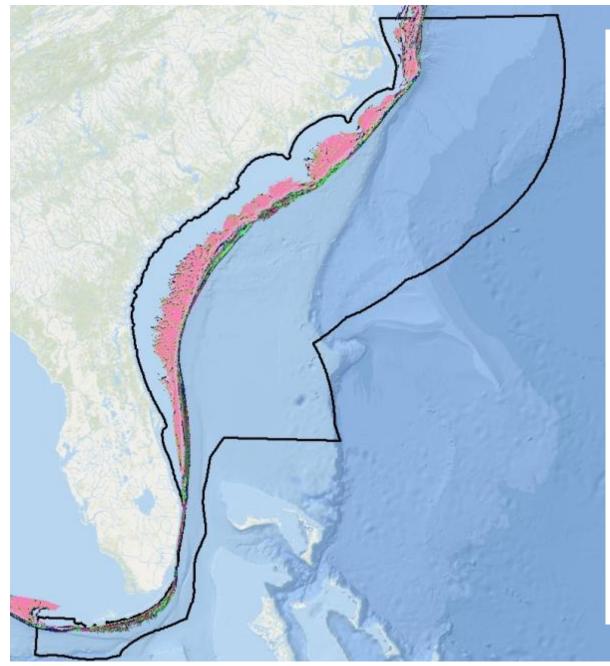

4. Ecospace computes capacity (cetaceans - depth)

4. More capacity (Western sardine - depth, MSFD W)

4. Run


GIS DATA FOR MANY ECOSPACE LAYERS Connected to existing Ecospace driver layers

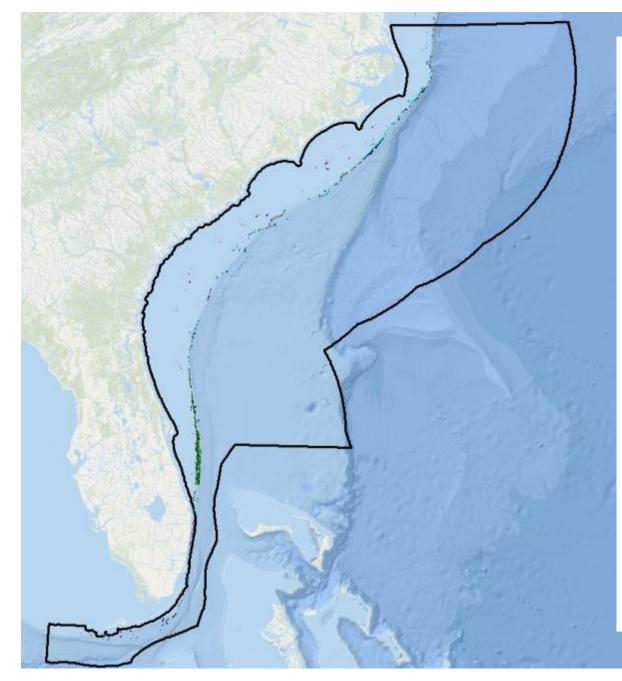
Primary production **Environmental drivers** Habitats Fishing cost **MPA** layouts Contaminants Migration Computed foraging capacity **Coming soon**



- South Atlantic Marine Bight Assessment (SABMA) project synthesized info on substrate and depth zones
- Does not cover entire council area
 - Should work for most groups
 - Will extend with other datasets for groups that need it

Data coverage

			Depth					
		Zone	Taxa (Examples to 350 m based on USFWS Vessel Survey)					
	0-30	Infralittoral (Nearshore Shelf and Estuaries)	Fish: (215 species / 99 restricted) lookdown, Atlantic bumper, northern sennet, moonfish, southern stargazer, gaff topsail catfish, southern flounder, American shad, Atlantic menhaden <u>Invertebrates:</u> Atlantic brief squid, blue crab, fire sponge, green sea urchin, notched sand dollar, banded sea star, penaeid shrimp					
	30-70	Shallow Circalittoral (Mid Shelf)	Fish: (232 species / 71 restricted) Examples: polka-dot Batfish, grey Trigger fish, flame fish, black grouper, sharp nose puffer, flying gurnard, black-winged sea robin, tom-tate <u>Invertebrates</u> : arrow squid, Atlantic surf clam, crusting bryzoan, hydranths, sponges, and mantis shrimp					
Depth (meters)	70-200	Deep Circalittoral (Outer Shelf & Shelf Edge)	Fish: (185 species /40 restricted) yellowfin bass, jambeau, broad flounder, highfin scorpionfish, spiny flounder, three-eye flounder, big-eyed frogfish, spiny searobin <u>Invertebrates:</u> Atlantic rock crab, boreal asterias, brown rock shrimp, Cancer crab coarsehand lady crab, <i>Oculina</i> , brown-striped brittlestar					
	200-600	Shallow Mesobenthic (Shelf/Slope break - Charleston Bump)	Fish: (251 species /152 restricted) offshore hake, white hake, freckled skate, deepwater dab, fourbeard rockling, goosefish, slim flounder, fawn cusk-eel, spotted hake Invertebrates: northern shortfin squid, Jonah crab, cancer crab, rock shrimp, squat lobsters, <i>Lophelia pertusa</i> , black corals, glass sponges					
	600-1000	Deep Mesobenthic (Blake Plateau)	Fish: (56 species / 17 restricted) Cuban pygmy skate, smooth-head, scaleless dragonfish, duckbill eel, lightfish, snake mackerel Invertebrates: Polychaetes , deepwater corals (<i>Lophelia</i> and <i>Enallopsammia</i>)					
	1000 - 5000	Bathybenthic/Abyssal	Fish: (11/0) Not well sampled. Species with some proportion caught in this zone include: Pacific snake-eel, dusky flounder, spotted hake, dolphin					



Triggerfish

Depth zones

 Deep and shallow circalittoral (30 – 200m)

Esri DeLorme, GEBCC, NCAA NGDC, and obser com

Triggerfish

Depth zones

 Deep and shallow circalittoral (30 – 200m)

Substrate

• Hardbottom types

Esri DeLorme, GEBCC, NCAA NGDC, and other co

Spreadsheet for functional groups

- Now building a spreadsheet to filter all functional groups based on habitat variables (substrate, depth zones, temperature, etc)
- Will get that out to larger group for review before running models