SEDAR Procedural Workshop I Indices Introduction Why are we here?

> Julie A. Neer SEDAR Coordinator

Indices Procedural Workshop Miami, FL October 2008

SEDAR Procedural Workshops

Designed to address issues the have come up repeatedly in multiple SEDARs

- issues raised by both reviewers and participants

Designed to improve areas in the process that are lacking

Improve efficiency in preparation for workshops

- knowing what is expected

Increase quality of the product & amount of feedback at DW

Summary of Issues

Selection Criteria

Indices with conflicting trends supposedly tracking same stock or stock subset Little or no evaluation of indices with respect to their relationship to and ability to track overall abundance Discussion of correlations between indices

Weighting Schemes

Selection

Documentation

Maps of survey coverage Summary presentations

SEDAR is a Council process

>many steps past the Review Workshop

>need to build a "legally defensible record" of decisions

- "excessive requirements" for Review but necessary

for Council

My Role at this workshop:

SEDAR representative

➢Big picture

SEDAR Procedural Workshop – Indices

SEFSC, MIAMI, FL, Oct. 14-17, 2008

What makes a good index of abundance?

□ For fishery-independent:

- fishery-independent survey objectives
- sampling design
- species targeted
- life stage of target species at time of sampling
- time of year of survey
- areas where surveys are conducted
- length of time series
- conflicting trends with other independent and dependent indices

What makes a good index of abundance?

For fishery-dependent data:

- species targeted (including data reduction techniques)
- life stage of target species at time of fishery prosecution
- effects of data reporting errors
- time of year of fishery prosecution
- areas where fishery is prosecuted
- length of time series
- regulation and closure effects

Objectives of the workshop and resulting document:

- address the above factors relative to numerous databases used in the SEDAR process
- provide minimum requirements and an expected format for submission of SEDAR data workshop documents concerning development of abundance indices
- determine desired criteria for selecting indices for inclusion in the assessment model
- provide generalized and standardized computer code for developing abundance indices.
- The major deliverable of this workshop will be a document providing guidelines for indices development and documentation and criteria for assessing the usefulness of individual indices for stock assessment purposes.

Tuesday, October 14th

1300 Introduction (Julie Neer and Walter Ingram)

1320 Overview of Large Scale Fishery Independent Surveys (Walter Ingram)

1350 Overview of Small Scale Fishery Independent Surveys (Cami McCandless and John Carlson)

1420 Discussion and Determination of Main Issues of Fishery Independent Surveys (everyone)

1450 Break

1500 Fisheries dependent commercial data and its use in constructing indices of abundance (Kevin McCarthy)
1530 Standardization of Recreational CPUE: data sources and issues (Craig Brown)
1600 Discussion and Determination of Main Issues of Fishery Dependent Surveys (everyone)

A Brief Overview of Large-Scale, Fishery-Independent Surveys of NOAA Fisheries, MS Labs, in Relation to Development of Indices of Abundance, Problems and Solutions

Walter Ingram

Resource Surveys

Plankton Surveys
Trawl Surveys
Reef Fish Surveys
Longline Surveys

Survey	Season	Gear	1950 + 1972 1973 1974 1975	1977 1978 1979 1980	1982 1983 1984 1985	1986 1987 1988	1990 1991	1993 1994 1995	1996	1998 1999 2000	2001	2003	2005	Voare Voare	Tedis
Plankton	Spring	Bongo /	1											25	9
	Summer Groundfish Piggyback	Bongo / Neuston	-											2	6
	Fall Plankton	Bongo / Neuston												2:	1
	Fall Groundfish	Bongo /												2	6
	Piggyback	Neuston												21	5
	Winter	Bongo /												_	,
	Plankton	Neuston												_	

Comparative coverage of plankton sampling during SEAMAP resource surveys (prior to the 2007 winter survey in the eastern Gulf)

Plankton Surveys (FSSI Stocks)

- SEAMAP spring plankton survey
 - Brown shrimp, Red grouper, Greater amberjack, Gag, Yellowedge grouper, Snowy grouper, Black grouper, Nassau grouper

SEAMAP fall plankton survey

 Brown shrimp, Pink shrimp, White shrimp, Royal red shrimp, Red snapper, Red grouper, Vermilion snapper, Gray triggerfish, Hogfish, Red drum

SEAMAP winter plankton survey

- Royal red shrimp, Gag, Yellowedge grouper, Snowy grouper, Black grouper, Hogfish, Nassau grouper
- SEAMAP piggyback plankton surveys (on groundfish surveys)
 - Brown shrimp, Pink shrimp, White shrimp, Royal red shrimp, Red snapper, Greater amberjack, Gray triggerfish,

Plankton Surveys Concerns

Systematic Sampling Design
 Stations in 30-nmi grid
 Winter plankton surveys intermittent
 Indices typically have large CVs

Reef Fish Surveys SEAMAP Trap/video survey Madison-Swanson Monitoring Oil Rig Monitoring

			Year	
Survey	Season	Gear	$\begin{array}{c} 1950 + \\ 1972 \\ 1973 \\ 1974 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1978 \\ 1978 \\ 1987 \\ 1988 \\ 1988 \\ 1998 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 2000 \\ $	Years
Reef Fish	SEAMAP	Video / Trap		12
	Madison - Swanson	Video		7
	Summer Oil Rigs	Bandit		1

Targets groupers, snappers, other Reef Fish FMP species.

 Two stage sampling. Primary Units are 10' Blocks of latitude and longitude. Ultimate sample units are reef sites.

1992-1997; 2001-2002, 2004-2007

Reef Fish Surveys (FSSI Stocks)

SEAMAP Trap/video survey

- Red snapper, Red grouper, Greater amberjack, Vermilion snapper, Gag, Gray triggerfish, Yellowedge grouper, Snowy grouper, Black grouper, Hogfish, Nassau grouper
- Madison-Swanson Monitoring
 - Same as above
- Oil Rig Monitoring
 - Red snapper

Reef Fish Surveys Concerns

SEAMAP Trap/video survey

- Decent time series length but with data holidays
- Limited Survey Area
- Indices typically have large CVs
- Madison-Swanson Monitoring
 - Limited survey area
 - Relatively short time series
 - Indices typically have large CVs
- Oil Rig Monitoring
 - Just started

Trawl Surveys SEAMAP Fall groundfish trawl survey SEAMAP Summer groundfish trawl survey Small Pelagic high opening bottom trawl (HOBT) survey

Vear

			r cu	
Survey	Season	Gear	$\begin{array}{c} 1950 + \\ 1972 \\ 1973 \\ 1974 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1976 \\ 1987 \\ 1988 \\ 1996 \\ 1997 \\ 1996 \\ 1997 \\ 1996 \\ 1997 \\ 1996 \\ 1997 \\ 1996 \\ 1996 \\ 1997 \\ 1996 \\ $	Years
Trawl	Summer Groundfish	40' Shrimp Trawl	2	7
	Fall Groundfish	40' Shrimp Trawl	3	1
	Exploratory Cruises	Varied	1	
	Fall Small Pelagics	90' HOBT	1	5

''IIIIIII Fall Groundfish

Summer Groundfish

Effort during Historic and current Small Pelagics Trawl Surveys

Trawl Surveys (FSSI Stocks)

SEAMAP Fall groundfish trawl survey

 Brown shrimp, Pink shrimp, White shrimp, Red snapper, Greater amberjack, Vermilion snapper, Gray triggerfish

SEAMAP Summer groundfish trawl survey

- Brown shrimp, Pink shrimp, White shrimp, Red snapper, Greater amberjack, Vermilion snapper, Gray triggerfish
- Small Pelagic high opening bottom trawl (HOBT) survey
 - Brown shrimp, Pink shrimp, White shrimp, Royal red shrimp, Red snapper, Greater amberjack, Vermilion snapper, Gray triggerfish

Trawl Surveys Concerns SEAMAP Fall and Summer groundfish trawl survey

Indices for certain species have large CVs

- Small Pelagic high opening bottom trawl (HOBT) survey
 - Decent time series length but with data holidays and changes in survey design
 - Indices typically have large CVs

Longline Surveys Bottom Longline Survey Pelagic Longline Survey Regional, Coastal Longline Survey

			Year	
Survey	Season	Gear	$\begin{array}{c} 1950 + \\ 1972 \\ 1973 \\ 1974 \\ 1975 \\ 1977 \\ 1977 \\ 1979 \\ 1979 \\ 1986 \\ 1988 \\ 1987 \\ 1988 \\ 1998 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1999 \\ 1990 \\ 1999 \\ 1990 \\ $	Years
Longline	Summer	Bottom Longline		13
	Spring	Pelagic Longline		4
	Regional Inshore	Bottom Longline		1

Survey areas for **NMFS** shark projects (1995 - 2008) in the western North Atlantic Ocean.

Survey area and sampling locations (indicated by crosses) in the Gulf of Mexico during National Marine Fisheries Service, Mississippi Laboratories fisheries-independent bottom longline surveys, 1995-2006

Sampling effort and catch-per-unit-effort (CPUE) of silky sharks collected during pelagic longline surveys conducted by NMFS/MSLABS. Sampling effort is indicated by crosses. CPUE of silky sharks collected during 2004, 2005 and 2006 is indicated squares, circles and diamonds, which are linearly related to the magnitude of the CPUE.

Longline Surveys (FSSI Stocks)

Bottom Longline Survey

 Red snapper, Red grouper, Greater amberjack, Vermilion snapper, Gag, Yellowedge grouper, Snowy grouper, Red drum

Pelagic Longline Survey

King mackerel, Little tunny, Blue marlin, White marlin, Sailfish, Bigeye Tuna, Albacore, Bluefin tuna, Yellowfin tuna, Swordfish, Sandbar shark, blacktip shark, blacktip shark, Shortfin mako shark, Blue shark, Dusky shark

Regional, Coastal Longline Survey

Red snapper, Greater amberjack, Red drum

Longline Surveys Concerns **Bottom Longline Survey** The time-series were considered short as of the most recent stock assessments Indices typically have large CVs Pelagic Longline Survey and Regional, Coastal Longline Survey Still in the developmental stages

Overall Concerns of Large-Scale, Fishery Independent Surveys Most prevalent concern – large CVs of the abundance

Bluefin tuna: Spring larval Survey

indices

Overview of Small Scale Fishery Independent Surveys

John Carlson SEFSC-Panama City, FL

Cami McCandless NEFSC-Narragansett, RI
Why small scale?

Sampling in different spatial and temporal zones

 Most larger NOAA vessels unable to get into shallow areas or restricted to certain times of the year

 Different life stages

 Earlier life stages often found outside normal sampling areas
 Recruitment indices

 At times, only available information is from small scale surveys

Survey design

Equal

weight?

- Standardized to fullest extent possible
 - Established stations
 - Randomly stratified by depth, grid, area, season
 - Study specific
- Trawls, longlines, gillnets, traps, hook and line, and visual surveys
- Not stockwide but can be smaller segments of the species range
- Target species
 - Gag (Koenig and Coleman 1998; Heinisch and Fable 1999)
 - Sharks (Carlson and Brusher 1999, McCandless 2005, Drymon 2007)
 - Red porgy (Devries 2006)
 - Reef fish (Gomez 2000, Tobias et al. 2002, Mateo 2002)
 - State surveys
 - TX parks and Wildlife, SCDNR, FWC

Examples of Geographic Coverage

C. Bonnethead Shark

Issues with standardized surveys

- Gear changes
- Temporal and spatial coverage
- High proportion of zeros
- Gear selectivity
- Uncontrollable environmental factors

 Funding/logistical issues – discontinuous or short time series, variable effort

Need for GLM standardization

GLM Standardization

Models used:

 Log normal (cpue + x)
 Poisson
 Delta-lognormal

 Final model selected through stepwise elimination of factors Results of the stepwise procedure for development of the catch rate model for juvenile age 1+ sandbar sharks captured by longline in Delaware Bay. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the di fference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE -B	VE -BINOMIAL ERROR DISTRIBUTION									
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CH I		
NULL	279	384.4973	1.3781							
REGION	271	318.0197	1.1735	14.8465	14.8465	-159.0099	66.48	<.0001		
YEAR	275	373.5627	1.3584	1.4295		-186.7813	10.93	0.0273		
MONTH	278	379.7936	1.3662	0.8635		-189.8968	4.70	0.0301		
DEPTH	246	381.0803	1.3807	-0.1887		-190.5 401	3.42	0.3317		
REGION +										
YEAR	267	303.8540	1.1380	17.4225	2.5760	-151.9270	14.17	0.0068		
MONTH	270	311.9419	1.1553	16.1672		-155.9710	6.08	0.0137		
DEPTH	268	310.1205	1.1572	16.0293		-155.0603	7.90	0.0481		
REGION + YEAR +										
MONTH	266	297.4271	1.1181	18.8666	1.4440	-148.7135	6.43	0.0112		
DEPTH	264	295.4705	1.1192	18.7867		-147.7352	8.38	0.0387		
REGION + YEAR + MONTH +										
DEPTH	263	288.8211	1.0982	20.3106	1.4440	-144.4106	8.61	0.0350		
FINAL MODEL . REGION +	FAR + MONTH + C	FPTH								

Akaike's information criterion -656.9 Schwartz's Bayesian criterion -658.7

(-2) Res Log likelihood 1311.8

	Type 3 Test of I				
Significance (Pr>Chi) of Type 3	REGION	YEAR	MONTH	DEPTH	
test of fixed effects for each factor	<.0001	0.0098	0.0132	0.0485	
DF	8	4	1	3	
CHI SQUARE	53.62	13.32	6.14	7.88	

Positive catches-Poisson error distribution

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQUARE	PR>CHI
NULL	77	212.082	2.754			-63.525		
YEAR	69	95.374	1.382	49.816	49.816	-5.171	116.71	<.0001
SEASON	75	179.857	2.398	12.933		-47.413	32.22	<.0001
TIME	74	179.533	2.426	11.916		-47.251	32.55	<.0001
AREA	75	191.905	2.559	7.101		-53.437	20.18	<.0001
SETDEPTH	76	212.056	2.790	-1.304		-63.512	0.03	0.8724
YEAR +								
AREA	67	88.610	1.323	51.983	2.167	-1.789	6.76	0.0340
SEASON	67	89.972	1.343	51.245		-2.470	5.4	0.0671
TIME	66	94.311	1.429	48.119		-4.640	1.060	0.7861
YEAR + AREA +								
SEASON	65	81.941	1.261	54.230	2.248	1.545	6.67	0.0356
YEAR* AREA	57	75.686	1.328	51.791	-2.439	4.673	6.26	0.6186
YEAR* SEASON	57	78.585	1.379	49.944		3.223	3.36	0.9100
FINAL MODEL: YEAR + AREA + SEASON								
Akaika's information oritorian	100.2							
Akaike's information criterion	100.5							
Schwartz's Bayesian criterion	182.5							
(-2) Res Log Likelihood	178.3							
(-)								
	Type 3	Tests of Fixed	Effects					
Significance (Pr>Chi) of Type 3	YEAR	AREA	SEASON					
test of fixed effects for each factor	<.0001	0.0180	0.0356					
DF	8	2	2					
CHI SQUARE	72.37	8.0300	0.04					

STANDARDIZATION

- Factors generally explain 5-15% deviance in the final model
- Spatial factors and gear changes generally explain the greatest deviance from the null model from those factors examined
 - Selection of factors may be important consideration

GLM HELPS TO REMOVE "NOISE" FROM SURVEY INDICES

GLM CORRECTION FOR BIAS

Environmental Factors

LCS05/06-DW-24 Figure 1. Relative indices of abundance for all blacktip and LCS sharks from Mississippi coastal water, 1998-2005.

More exploration of environmental factors (GAMS)

OTHER ISSUES

- Flighly skewed survey data containing a large portion of zeros
 - Ignore
 - Negative binomial
 - Poisson
 - Accommodate
 - Delta-lognormal
 - Model
 - Zero-inflated negative binomial
- Lack of examination of diagnostic plots to test assumptions for an acceptable model fit
- Conflicting signals

Science, Service, Stewardship

Fisheries dependent commercial data for constructing indices of abundance

NOAA FISHERIES SERVICE

Available commercial data sets: interview/observer

Trip interview program (TIP)

Observer data

- -Pelagic longline
- -Shark bottom longline Gulf and South Atlantic
- -Shark gillnet observer
- -Gulf reef fish
- —Shrimp observer

Available commercial data sets: self-reported

Trip ticket Coastal logbook Pelagic logbook – all US flagged vessels (HMS) Puerto Rico sales tickets USVI landings reports Others:

- -Golden crab logbook
- -Wreckfish logbook
- -Gulf shrimp statistics
- -Atlantic shrimp

Available Data

Trained observer/sampler

- -Accurate species identification
- -Size information
- -Other details of fishing behavior/conditions, e.g. fished at night, weather conditions, etc.
- -Fine scale spatial information (observers)
- -Total catch (observers)
- -Discard information (observers)
- -Accurate, detailed effort information (observers)
- —Detailed gear configuration information
- —Data are set-based (all longline observers, gillnets) or tripbased (TIP and gear other than longlines)

Available Data

Self reported

- -Honest, few errors, reporting as instructed?
- —Potential species misidentification (e.g. gag/black grouper)
- —Species identified by species category (e.g. groupers) or worse
- —Broad scale spatial information (except pelagic logbook)
- -Landings (pounds) not total catch
- —Some discard information (coastal & pelagic logbooks)
- —Effort information may be problematic (e.g. traps, bottom longlines)
- —Data are trip based, set based in pelagic logbook
- —Individual size information for some species in pelagic logbook

SERV	/ICE		Co	mn	herci	al c	lata	se	ets	ti	me	elir	۱e
BURNER OF THE ATTOC	R CONTROL	South Auanuc Surfuit	Trip Interview Program (TIP) Trin Ticket* GSS – less detailed data to 1956	Pelagic logbook set forms	Puerto Rico sales tickets* Coastal logbook Gulf of Mexico	Wreckfish logbook Coastal logbook South Atlantic Pelagic observer Coastal logbook full reporting	Shark bottom longline observer Golden crab logbook USVI landings reports	Shark gillnet observer				Gulf of Mexico reef fish observer	
1970 1972 1974	1976	19/0	1982 - 1984 -	1986	1988 - 1990 -	1992	1994 1996	1998	2000	2002	2004	2006	2008

NOAA

FISHERIES

Spatial extent of commercial fishing data

Federal waters

- States may have commercial data available (e.g. trip tickets)
- Some gears restricted from certain areas (e.g. longline >20/50 fathoms, traps banned from Gulf)
- Pelagic logbook all US flagged vessels regardless of areas fished
- Closed areas in some fisheries, including year-round and seasonal closures

Data set spatial coverage

Spatial scale of reporting

All observer data at fine spatial scale (e.g. lat/lon at beginning and end of longline set)

- Pelagic logbook at fine spatial scale
- Coastal, wreckfish, golden crab logbooks; USVI landings; coarse spatial reporting
- Trip ticket, Puerto Rico area fished not reported port/county landed reported
- Depth information reported for observer data, logbooks, TIP, Puerto Rico, GSS
- No depth information for trip tickets, USVI (distance from shore)

May be a single gear, e.g. pelagic longlines – pelagic longline observer data
May include many gears, e.g. 11 gears (plus 4 "other" categories) may be reported on the coastal logbook
Multiple gears = multiple indices from a data set

Hook hour or other fine scale effort measure

- -Pelagic logbook
- -All observer data
- —TIP
- -Caribbean landings (in some cases)
- -Coastal logbook (handline/bandit rig, gill nets)
- -Golden crab and wreckfish logbooks
- -Shrimp landings/effort
- Day at sea or per trip
 - —Trip ticket
 - -Caribbean landings?

Size range of individuals in commercial data sets

Limited by gear – e.g. traps may catch greater range of sizes than longline or they may merely be different size ranges

Observer data likely to include greater size range (catch) and will often have size information

TIP will have sizes of landed fish

Logbook data reports landings (for the most part) and will include only legal size fish, but size of individual fish not available – pelagic logbook does have lengths/weights of individuals

Commercial data advantages

Large sample size – coastal logbook >2.3 x 10⁶ records Data for multiple gears – multiple indices that reflect broader size/age/spatial range of the stock

- Spatially extensive often much more so than fisheries independent data, data are from where the fish are abundant
- Relatively long time series
- Many species are reported these data sets may be useful for many, if not all, assessments of exploited species (not much use for protected species, e.g. goliath grouper)

Commercial Data Issues/Limitations

Size distribution of caught/landed animals I imited number of variables in the data sets Discards, i.e. landings not catch Individual data set caveats Species misidentification/non-reporting CPUE correlated with abundance? Changing catchability Defining targeting Fishing regulations

Size distribution of catch/landings

Commercial fishing gear not a good sampling method for all size classes

- At best the total catch is sampled and that likely will not include the smallest individuals
- For many data sets (e.g. logbooks) the size structure of the landings is completely unknown other than the assumption that all animals (or nearly all) were legal size or larger

Limited number of variables in the data sets

Ability to characterize gears, vessels, areas fished, fishing behavior, etc. are all highly variable among data sets
Observer data typically contains more detailed information
Self-reported data includes less detailed gear configuration information – this varies from no information (e.g. trip ticket) to fairly detailed (e.g. pelagic logbook includes hook size/type/offset, bait type)

Self-reported data usually includes only coarse spatial detail or none (trip ticket, PR); exception is pelagic logbook with reporting at finer scale

Captain information (e.g. experience) often lacking

Total catch vs. landings

Total catch

- —Observer data, may also include size of individual animals
- -Coastal logbook trips that report discards, but landings are in pounds and discards are counted
- -Pelagic logbook reports may include discards

Landings

—TIP

—Trip ticket

-All logbooks (except pelagic when discards reported)

Individual data set caveats

Some are more caveat rich than others, but all have their issues

Know your data, it will save time, potential embarrassment, and thousands of dollars in therapy

Species misidentification/nonreporting

Should only be an issue with self-reported data, including self-reported discards
May be systematic or limited to individual fishers
Major issue with gag and black grouper
Unknown problem until SEDAR data workshop
Used TIP data to develop conversion factors that were applied to both landings and coastal logbook data

CPUE correlated with abundance?

Especially problematic for commercial data, fishermen know how and where to catch fish

- Most commercial data sets have poor measures of search time, if it can be estimated at all from the available data, so entire effort not included in most analyses
- Changing spatial extent of the fishery may indicate changes in stock size even if CPUE is flat or increasing
- This issue drove the queen conch assessment, or lack of one, in the Caribbean short answer, it wasn't

Changing catchability

Poorly understood, topic for the next workshop May vary with improvements in technology (e.g. GPS), gear changes (e.g. hook design), environmental conditions (e.g. red tides), and fisher experience (affects individual vessels as well as fisheries as a whole)

Observer data most likely to have some measures of potential causes of catchability change in available data

Targeting

Targeting may be reported for:

- -Observer data (ask the captain)
- -Pelagic logbook?
- —TIP?
- -Golden crab and wreckfish logbooks
- -Shrimp landings and effort

Targeting information not directly available for:

- —Trip ticket
- -Caribbean landings/sales ticket
- -Coastal logbook

Targeting not reported, now what?

Gear configuration based approach

- -Characterize gear configuration(s) of positive trips
- -Include all trips with appropriate gear configuration
- -May have limited information for gear configuration
- -Ad hoc and subjective

Stephens-MacCall

Possible effects of regulations on the construction of indices of abundance

Indices potentially affected: all constructed from fishery dependent data

Regulatory measures of concern:

- -Regulatory boundaries spatial and temporal
- -Minimum size limits
- —Fishery closures
- -Bag/trip limits

Regulatory boundaries

DOR HID ATMOSPHERIC THE RATION

Zones used in commercial indices

King mackerel commercial fishing regulations: effective dates of minimum size limits

Size Limit	W-GOM	FLWC	FLWC-N	FLWC-S	KEYS	FECZ	SA
12''	7/1/1990	7/1/1990	n/a	n/a	4/1/1990	4/1/1990	4/1/1990
20''	7/1/1992	7/1/1992	n/a	n/a	4/1/1992	4/1/1992	4/1/1992
24''	7/1/1999	7/1/1999	4/27/2000	4/27/2000	4/1/1999	4/1/1999	4/1/1999

Minimum size limits

Split the index when size limit implemented or changed

- -May result in indices with short time series
- —Multiple size limit changes = multiple short time series indices
- Determine if size limit change had an effect on size of landed animals
 - —Use TIP or observer data pre- and post-regulation

King mackerel commercial fishing regulations: effective dates of regional fishery closures

W-GOM FLWC		WC	FECZ		KEYS		SA		
open	close	open close		open	close	open	close	open	close
INAN	5/6/1983		3/12/1986		3/12/1986		3/12/1986		11/23/1988
7/1/1983	3/12/1986	7/1/1986	2/4/1987	4/1/1986	2/4/1987	4/1/1986	2/4/1987	4/1/1989	3/29/1998
7/1/1986	2/4/1987	7/1/1987	1/27/1994	4/1/1987	12/29/1987	4/1/1987	1/27/1994	4/1/1998	
7/1/1987	11/2/1987	7/1/1994	12/20/1994	4/1/1988	12/31/1988	4/1/1994	12/20/1994		
7/1/1988	12/3/1988	2/7/1995	2/22/1995	4/1/1989	1/9/1990	2/7/1995	2/22/1995		
7/1/1989	10/25/1989	7/1/1995	2/22/1996	4/1/1990	1/4/1991	4/1/1995	2/22/1996		
7/1/1990	10/18/1990	7/1/1996	1/22/1997	4/1/1991	1/31/1992	4/1/1996	1/22/1997		
7/1/1991	9/29/1991	7/1/1997	1/7/1998	4/1/1992	1/13/1993	4/1/1997	1/7/1998		
7/1/1992	10/18/1992	2/20/1998	3/5/1998	2/18/1993	3/27/1993	2/20/1998	3/5/1998		
7/1/1993	10/1/1993	7/1/1998	3/16/1999	4/1/1993	3/29/1998	4/1/1998	3/16/1999		
7/1/1994	9/24/1994	7/1/1999	3/6/2000	4/1/1998	3/13/1999	4/1/1999	3/6/2000		
7/1/1995	9/5/1995	FLV	VC-S	4/1/1999		4/1/2000	3/2/2001		
7/1/1996	8/26/1996		4/27/2000			4/1/2001	3/23/2002		
7/1/1997	8/2/1997	7/1/2000	3/2/2001			4/1/2002	3/12/2006		
2/20/1998	3/29/1998	7/1/2001	3/23/2002			4/1/2006			
7/1/1998	8/25/1998	7/1/2002	4/9/2004						
7/1/1999	8/25/1999	7/1/2004	3/12/2006						
7/1/2000	8/26/2000	7/1/2006							
7/1/2001	11/20/2001	FLV	VC-N						
7/1/2002	10/26/2002		4/27/2000						
7/1/2003	9/25/2003	7/1/2000	11/19/2000						
7/1/2004	10/21/2004	7/1/2001	11/11/2001						
7/1/2005	11/18/2005	7/1/2002	12/6/2002						
7/1/2006	10/7/2006	7/1/2003	11/14/2003						
		7/1/2004							0

Exclude data from periods of fishery closures to avoid erroneously lowering yearly mean CPUE

NO ATMOSPHU

King mackerel commercial fishing regulations: effective dates of regional trip limit changes

	W-GOM			FLWC			SA	
limit	start	end	limit	start	end	limit	start	end
none		6/30/2000	none		12/28/1993	none		3/31/1995
3,000 lbs	7/1/2000		50 fish	12/29/1993	6/30/1994	3,500 lbs	4/1/1995	
			none	7/1/1994	2/6/1995			
	FLWC-S		125 fish	2/7/1995	2/21/1995		FLWC-N	
1250 lbs	7/1/2000	2/19/2001	125 fish	7/1/1995	1/23/1996	1250 lbs	7/1/2000	11/11/2000
500 lbs	2/20/2001	3/1/2001	50 fish	1/24/1996	2/21/1996	500 lbs	11/12/2000	11/18/2000
1250 lbs	7/1/2001	3/10/2002	1250 lbs	7/1/1996	12/31/1996	1250 lbs	7/1/2001	11/10/2001
500 lbs	3/11/2002	3/22/2002	500 lbs	1/1/1997	1/21/1997	1250 lbs	7/1/2002	11/29/2002
1250 lbs	7/1/2003	3/4/2003	1250 lbs	7/1/1997	11/27/1997	500 lbs	11/30/2002	12/5/2002
500 lbs	3/5/2003	6/30/2003	500 lbs	11/28/1997	1/6/1998	1250 lbs	7/1/2003	10/29/2003
1250 lbs	7/1/2003	3/19/2004	500 lbs	2/20/1998	3/4/1998	500 lbs	10/30/2003	11/13/2003
500 lbs	3/20/2004	4/8/2004	1250 lbs	7/1/1998	1/29/1999	1250 lbs	7/1/2004	11/26/2006
1250 lbs	7/1/2004	2/24/2005	500 lbs	1/30/1999	3/15/1999	500 lbs	11/27/2006	
500 lbs	2/25/2005	6/30/2005	1250 lbs	7/1/1999	1/23/2000			
1250 lbs	7/1/2005	2/24/2006	500 lbs	1/24/2000	3/5/2000			
500 lbs	2/25/2006	3/11/2006						
1250 lbs	7/1/2006							

NOAA King mackerel commercial fishing regulations: FISHERIES effective dates of regional trip limit changes, SERVICE continued

/									
(A)		KEYS		FECZ					
EL ON	limit	start	end	limit	start	end			
NATION	none		12/28/1993	none		1/12/1993			
4.5	50 fish	12/29/1993	1/26/1994	25 fish	2/18/1993	3/26/1993			
9	ARTMENT OF COMONE	4/1/1994	12/19/1994	none	4/1/1993	10/31/1993			
	125 fish	2/7/1995	2/21/1995	50 fish	11/1/1993	3/31/1994			
	50 fish	4/1/1995	10/31/1995	none	4/1/1994	10/31/1994			
	125 fish	11/1/1995	1/23/1996	50 fish	11/1/1994	3/14/1996			
	50 fish	1/24/1996	2/21/1996	25 fish	3/15/1996	3/31/1996			
	50 fish	4/1/1996	10/31/1996	50 fish	4/1/1996	10/31/1996			
	1250 lbs	11/1/1996	12/31/1996	750 lbs	11/1/1996	2/28/1997			
	500 lbs	1/1/1997	1/21/1997	500 lbs	3/1/1997	3/31/1997			
	1250 lbs	4/1/1997	11/27/1997	50 fish	4/1/1997	3/28/1998			
	500 lbs	11/28/1997	1/6/1998	50 fish	4/1/1998	3/12/1999			
	500 lbs	2/20/1998	3/4/1998	50 fish	4/1/1999	3/31/2000			
	1250 lbs	4/1/1998	1/29/1999	75 fish	4/1/2000	10/31/2000			
	500 lbs	1/30/1999	3/15/1999	50 fish	11/1/2000	3/31/2001			
	1250 lbs	4/1/1999	1/23/2000	75 fish	4/1/2001	10/31/2001			
	500 lbs	1/24/2000	3/5/2000	50 fish	11/1/2001	1/31/2002			
	1250 lbs	4/1/2000	2/19/2001	75 fish	2/1/2002	10/31/2002			
	500 lbs	2/20/2001	3/1/2001	50 fish	11/1/2002	1/31/2003			
	1250 lbs	4/1/2001	3/10/2002	75 fish	2/1/2003	10/31/2003			
	500 lbs	3/11/2002	3/22/2002	50 fish	11/1/2003	1/31/2004			
	1250 lbs	4/1/2002	3/4/2003	75 fish	2/1/2004	10/31/2004			
	500 lbs	3/5/2003	3/31/2003	50 fish	11/1/2004	1/31/2005			
	1250 lbs	4/1/2003	3/19/2004	75 fish	2/1/2005	10/31/2005			
	500 lbs	3/20/2004	3/31/2004	50 fish	11/1/2005	1/31/2006			
	1250 lbs	4/1/2004	2/24/2005	75 fish	2/1/2006	10/31/2006			
	500 lbs	2/25/2005	3/31/2005	50 fish	11/1/2006				
	1250 lbs	4/1/2005	2/24/2006						
	500 lbs	2/25/2006	3/11/2006						
	1250 lbs	4/1/2006							

Coastal Logbook Data, Keys 500 lbs trip limit

NOAA

Trip limits

Determine the extent to which trip limits may have effected fishing effort

- -If no effect (few or no trips reach limit), then ignore
- -If effect (many trips limit, how many is "many"), can't ignore
- If many trips limit
 - —Exclude data from periods/regions when trip limit was in effect
 - —Use censored data approach

Elements to include in SEDAR documents

Identify the data set

- Temporal and spatial range of the data
- Identify the measure of effort
- Describe how targeted trips (or sets, trawls, etc.) were identified
- Describe size structure of the catch if known
- Are the data landings or total catch, in pounds or individuals
- Table of factors/variables considered in the analysis Methods of addressing fishing regulations

Science, Service, Stewardship

Fishery Dependent Indices:

Standardization of Recreational CPUE -Data and Issues NOAA FISHERIES SERVICE

Data reported through surveys/logbooks

Basic info:

- Effort Measures (e.g. trips, hours fishing, hooks, lines, anglers)
- Catch (species, numbers or weight)
- Date (year, month or quarter)
- General location (fishing area)

Preferred detail:

- Effort Qualifiers (*e.g.* fishing method, bait, gear configuration, fishing depth, time of day, TARGET SPECIES)
- Catch Status (kept, release dead or alive, reason for release)
- Date (day)
- Detailed Location (lat/lon, fishing spot)
- Environmental Info (e.g. SST, depth, weather, sea state)

Available Recreational CPUE Data

Marine Recreational Fishery Statistics Survey:

- Catch and effort statistics collected on intercepted angler-trips by fishing mode (shore, private or rental boats, charter boats and/or headboats) since 1981 for Louisiana through Maine. Texas was partially sampled by the MRFSS in 1981-1985, but has not participated in the survey since 1985.
- Sampling unit is angler-trip, but these are clustered within a vessel-trip)
- Catch (numbers by species, whether observed by sampler or not, disposition)
- General location only (state/sub-region, offshore/near-shore)

HEADBOAT Survey:

- Total landed catch by species is reported by trip in logbooks provided to all headboat crews from TX-NC.
- Only kept fish recorded for most of survey history. Field for released fish added in 2004, but reporting may be incomplete.
- The HBS has had full coverage in the S. Atlantic since 1981 and in the Gulf of Mexico since 1986.
- Detailed Location (lat/lon, 10 min square)

Available Recreational CPUE Data

Large Pelagics Intercept Survey:

- Catch and effort statistics collected on intercepted vessels returning from offshore trips targetting large pelagic species (tunas, billfish, sharks, etc.) since 1982 for Virginia through Massachusetts (in recent years, extended through Maine).
- Vessel captain interviewed (sampling unit is vessel-trip)
- Catch (numbers by species, whether observed by sampler or not, disposition)
- Detailed Location (lat/lon, fishing spot)
- Detailed fishing method (chum/troll/chunk, bait-live/dead/artificial)
- Limited environmental data (SST, water depth)
- Target Species (as reported by vessel captain)

YFT/LINE-HOUR vs LINE-HOURS

5

Headboat- Gulf of Mexico

A few common problems. . .

Defining target using Stephens and MacCall (2004) approach:

- Uses a multispecies logistic regression approach to predict the likelihood of catching the species of interest based upon its association with other species in the catch. Defines a threshold probability value to accept trip/interview records.
- The Stephens and MacCall method is most appropriately applied to fishing trips that typically land a number of species on a single trip. This is generally not the case in the MRFSS dataset, and this can confound the estimation of the threshold required for the procedure. The approach appears to be more suitable in the case of the HBS.
- One difficulty in the application if this approach is how to handle trips that ONLY catch the species of interest. Since no associated species are caught on such trips, by default these trips might not be included. This is an obvious bias. However, forcing such trips into the analysis data set might also result in a bias if the trip factors would normally have made a catch unlikely. This is particularly a problem with MRFSS data.

Science, Service, Stewardship

Spatial considerations for CPUE indices

John Walter SEFSC October 15 2008

NOAA FISHERIES SERVICE NOAA FISHERIES INFORMATION CONTENT REDUCTION SERVICE

- 1. Definition of the problem
 - CPUE is function only of the fished area
 - Space-time interactions make CPUE difficult to interpret
- 2. Brief examination of possible issues, particularly for GLMs

3. Provision of some basic recommendations

RAPID COMMUNICATION / COMMUNICATION RAPIDE

Folly and fantasy in the analysis of spatial catch rate data

Carl Walters

Can. J. Fish. Aquat. Sci. 60: 1433-1436 (2003)

CPUE $q\overline{N}$: Hyperstability

Mobile fishery, stationary resource- Fishery moves before catch rates decline

Hyperinflation: index remains high as overall A drops

Abundance

CPUE $q \overline{N}$: Hyperdepletion

Catches concentrated in a few cells, depletes these, and moves to less productive areas

Hyperdepletion: index declines faster than overall A

Abundance

Need to predict in unfished areas Downweight clusters of high catches

Perhaps some method that weights sample values according to the space they "represent"

Requires some rather dodgy assumption regarding abundance in unfished areas

Interpolation, geostatistics, spatial GLMs, GAMs, etc

Problem 2: YEAR*AREA INTERACTIONS

- 1. Ignore the interaction
- 2. Obtain weighted average of year effect for each area
- 3. Treat the interaction as a random effect
- 4. Model separate populations

http://www.fisheriesstockassessment.com/TikiWiki/tikiindex.php?page=IATTC+October+Stock+Assessment+Methodology+Workshops Mark Maunder, pers comm, 2008

Interaction often an artifact of unbalanced sample design...but that imbalance may not be ignorable

May lead to bias when significant interactions exist

We may not be able to separate changes in abundance from changes in the fishery

We will likely not achieve 'legally defensible science'

2. Weight the year effects for each area

Define some type of spatial weighting factor, this could be a priori or within the model (geostatistical?)

Habitat area, area fished, etc.

Punt et al. (2000) used habitat area to weight gummy shark CPUE (*Mustelus antarcticus*) off southern Australia.

ICCAT(2008) Skipjack tuna assessment group weighted individual CPUE by number of 1° squares fished by each fishery in each year

Punt, A.E., Pribac, F.,Walker, T.I., Taylor, B.L., Prince, J.D., 2000. Stock assessment of school shark Galeorhinus galeus based on a spatially-explicit population dynamics model. Mar. Freshw. Res. 51, 205– 220.

ICCAT 2008 Skipjack tuna assessment

Model year interactions as random effects rather than as fixed effects.

Assumes that year×area interactions are due to random changes in the distribution of the population (Cooke 1997)

Why not fixed effect? - If year*area interactions are included in a fixedeffects GLM, the resulting estimates of annual CPUE are no longer unique, and may not converge with severe imbalance

BUT fixed effects may actually be the reality- we may not be able to separate changes in abundance over time from changes in location over time.

Cooke, J.G. 1997. A procedure for using catch-effort indices in bluefin tuna assessments. Col.Vol.Sci.Pap. ICCAT: 46 (2) : 228-232

How do we deal with movement?

How much of a particular index 'applies' to a given segment of the stock?

- 1. Tables of sample sizes/percent positive by area [simple]
- 2. Maps of catch observations for each year [simple]
- 3. Plot your data [very time consuming of analyst]
- 4. Evaluate how representative the index is of population of interest [subjective]

1. Table of observations, catch, effort, percent positive

Table of sample observations by area over time from Pelagic logbook

Is there a change in location over time

(highly dependent upon areal partitioning)

	Caribbean	Florida East	Gulf of Mexico	Mid-Atl. Bight	NE Coast	NE Distant	Sargasso Sea	South Atl. Bight
1986	76	379	448	239	209	51	2	93
1987	1605	3141	3003	1429	946	760	41	414
1988	2081	3340	2215	1282	957	1464	27	820
1989	1519	4142	2703	2069	1026	1577	186	970
1990	1391	3299	2672	2147	1617	1072	210	1386
1991	1043	2922	3145	2302	1794	1062	232	1152
1992	912	2539	3888	2456	1410	1189	385	1068
1993	1128	1962	3345	2476	1217	1067	606	1630
1994	1414	2108	3333	2821	1027	1007	642	1788
1995	1336	1963	3689	3061	1270	927	1191	1544
1996	1219	1830	4929	1429	1320	688	690	2729
1997	878	2254	5005	1719	1464	728	378	1706
1998	559	1785	3799	1741	1058	619	335	1411
1999	294	2097	4521	1814	757	430	194	1486
2000	420	1982	4432	1545	752	602	118	1325
2001	314	991	4459	1506	1003	332	172	1301
2002	288	934	4461	1283	681	493	206	834
2003	242	898	4425	903	556	534	297	948
2004	352	598	4542	958	547	456	156	1054
2005	201	569	3250	956	421	463	189	722
2006	84	578	2685	1088	456	383	209	760
2007	41	719	3078	1175	361	348	148	983
2008	51	156	285	17	NA	NA	44	123

2. Maps of catch/effort

- Maps of catch and effort for each year
- Examine for:
- contraction/ expansion of effort
- area*time interactions

Plot data on various spatial scales

Examine CPUE for time*area interactions

Examine CPUE before and after management actions

NOAA

Including year*area random interaction#

4. Evaluate how representative the index is of the population of interest

Perhaps as simple as some guess as to how much of the stock area the index 'covers'

How many shrimp grids, or other spatial cells?

- 1. Tables of sample sizes/percent positive by area [simple]
- 2. Maps of catch observations for each year [simple]
- 3. Plot your data [very time consuming of analyst]
- 4. Evaluate how representative the index is of population of interest [subjective]
- 5. How to deal with space-time interactions in GLM

Science, Service, Stewardship

Combined inference from multiple noisy CPUE Indices

Paul Conn, NMFS Beaufort

NOAA FISHERIES SERVICE

- In data poor fisheries (all of them?), there are often a number of CPUE indices to choose from. The situation (esp. in SE U.S.) is often the following:
- 1) There are multiple CPUE indices, but little-moderate correlation between them
- 2) Not clear which one is "best"
- 3) Numerical difficulties / poor fits when trying to fit them all

Since each index is ostensibly attempting to measure the same quantity (relative abundance), it is often evident that differences among indices cannot be explained by estimated level of sampling error (i.e., variation attributable to sample size)

There must be some residual, unexplained source of variation

In an age structured population, residual variation in index values can be explained in a number of ways:

- Selectivity differences between indices
- Departure from index assumptions (e.g., departures from IID sampling, model structure)
- Variation in catchability over time and space

Problem statement: Assuming selectivities are similar for different indices, can we come up with a single, *most probable* index conditional on observed index values and estimates of sampling variance?

Intuition: We'll probably need some way of estimating the additional variance not explained by sampling variance (hereafter, "process variance")

Intuition: The degree of agreement/disagreement between indices gives us some idea of how well they are measuring relative abundance.

- Assume that each index is subject to process errors in addition to sampling errors
- The most "likely" value an index can take on is related directly to actual changes in abundance and/or biomass
- Easier to describe problem in terms of relative change in an index than absolute value (scale invariant)

Joint inference approach

Why relative change in indices?

 \rightarrow Can't resolve differences in scaling with raw indices. But...

$$E(\Delta_{it}) = E\left(\frac{U_{i,t+1}}{U_{it}}\right) \quad \text{or biomass}$$
$$= E\left(\frac{q_{i,t+1}}{q_{it}}\right) \frac{N_{i,t+1}}{N_{it}} = E\left(\frac{q_{i,t+1}}{q_{it}}\right) \lambda_t \approx \lambda_t$$

(assuming no long term trend in catchability or adjusting for assumed trend beforehand)

Step 1: Calculate
$$\Delta_{it} = U_{i,t+1}/U_{it}$$

Step 2: Calculate sampling error σ_{it}^s for each index *i*, using delta method:

$$\hat{Var}(U_{i,t+1}/U_{it}) = \frac{\hat{Var}(U_{i,t+1})}{U_{it}^2} + \frac{U_{i,t+1}^2}{U_{it}^4} \hat{Var}(U_{it})$$

So, inference focuses on $\ \lambda_t$ but a derived index can be calculated as

$$\hat{\boldsymbol{\mu}} = [1, \lambda_1, \lambda_1 \lambda_2, \dots, \prod_t \lambda_t]$$

with an arbitrary value of 1 in the first year to scale the index

NOAA

Spanish mackerel example

Nine indices were constructed for Spanish mackerel, with the following correlation structure

	FL trip ticket, gillnet series 1	FL trip ticket, gillnet series 2	FL trip ticket, castnet	FL trip ticket, hand lines	MRFSS	Commercial logbook, GA- NY, gillnet	Commercial logbook, GA- NY, hand lines	SEAMAP YOY	SEAMAP YOY (1 yr. lag)	SEAMAP 1-yr- olds
FL trip ticket,										
gillnet series 1	1	NA	NA	-0.37	-0.16	NA	NA	-0.79	-0.73	-0.12
FL trip ticket,	NIA	4	0.00	0.40	0.00	0.04	0.00	0.00	0.00	0.07
Glinet series 2	NA	1	-0.63	-0.19	-0.28	-0.64	-0.29	0.22	0.03	0.27
ri inplickel,	NΔ	-0.63	1	0.44	0 19	0.28	-0 11	-0.67	-0.25	-0.51
FL trip ticket hand		0.00	I	0.44	0.15	0.20	0.11	0.07	0.20	0.01
lines	-0.37	-0.19	0.44	1	0.08	0.27	-0.08	0.22	-0.1	-0.18
MRFSS	-0.16	-0.28	0.19	0.08	1	0.14	0.21	-0.22	-0.03	-0.06
Commercial										
logbook, GA-NY,										
gillnet	NA	-0.64	0.28	0.27	0.14	1	0.15	0.19	0.68	-0.55
Commercial										
logbook, GA-NY,	N14	0.00	0.44	0.00	0.04	0.45		0.00	0.00	0.44
hand lines	NA	-0.29	-0.11	-0.08	0.21	0.15	1	0.06	0.38	-0.11
SEAMAP YOY	-0.79	0.22	-0.67	0.22	-0.22	0.19	0.06	1	0.44	-0.11
SEAMAP YUY (1	0.72	0.02	0.25	0.1	0.02	0.60	0.20	0.44	4	0.26
yr. iag)	-0.73	0.03	-0.25	-0.1	-0.03	0.00	0.38	0.44	1	-0.20
SEAMAP 1-yr-olds	-0.12	0.27	-0.51	-0.18	-0.06	-0.55	-0.11	-0.11	-0.26	1

12

- No a priori reason why one index best
- Commercial fishermen indicated there were shifts in wintering distributions that would affect different fisheries in a different manner
- Basing inference on a few indices would ignore information about catch-effort trends in other fisheries/regions

Decision: Apply joint inference procedure before running stock assessment analyses

Concentrated on 7 fishery dependent indices (6 commercial, 1 general recreational) where selectivity was "similar" over the most highly abundant/harvested age classes. Delta-GLMs used to construct each index.

(Two SEAMAP indices not considered because they reflected indices of young-of-year and 1-year-olds only)

- A hybrid Gibbs/Metropolis-Hastings sampler (programmed in R) was used to sample from posterior distribution of the parameters given the data (110,000 MCMC iterations with a 10,000 iteration burn-in
- Inference focused on changes in relative abundance (λ_t) , but a posterior predictive distribution for a "standardized" index calculated as

$$\hat{\boldsymbol{\mu}} = [1, \lambda_1, \lambda_1 \lambda_2, \dots, \prod_t \lambda_t]$$

Standard MCMC diagnostics indicated convergence to the posterior

Posterior means (w/ 90% CIs)

Spanish mackerel example

Also, get estimates of L_{it} (shrinkage estimates)

Shrinkage estimates Nominal

Lambda

1.0

0.6

1985 1990

1995 2000 2005

Year

1985 1990 1995 2000 2005

Year

Lambda

1.0

0.6

Spanish mackerel example

Estimates of process error

3.0

2.0

o.

0.0

0.0

Density

FL.CN

Density З

Density

2

0

MRFSS

LB.GN

0.5 1.0

Process SD

1.5 2.0

Process SD

ŝ

LB.HL

19

- Focusing on gradients allows combination of indices of different length (scale invariant)
- Calibration concerns possibly less of an issue
- Doesn't require subjectivity but if some is desired, it could take the form of informative prior distributions on process errors (e.g., if certain indices have better spatial coverage, etc.)

But.... There are some caveats

- Somewhat sloppy of a method in that the "true" lambda may differ for each index if selectivity differs among indices – it's not defined in an entirely consistent way
- May not be appropriate for metapopulations
- Precision of combined index increases over course of study because of compounded uncertainty in lambda
 - -Assume fixed variance
 - -Fit to lambda within assessment model
 - —Fit internally to assessment model itself (also could account for selectivity differences...but added computing time)

Simulation study needed to examine

- Overall performance when assumptions met
- Effects of different selectivities
- Different patterns of process variance
- Different functional forms for model components (model selection/averaging ?)

Current recommendation: Only use for indices with "similar" selectivities

STEPHENS & MACCALL

BETTER INTUITION

AND

DI&GNOSTICS

California Recreational Fishery

- Partyboats ~ 10 fishers
- Different targets: different habitat
- Targets: 120 spp.
 - Tuna
 - Salmon
 - Groundfish
- Visit 1-4 sites/day

NMFS Bocaccio Assessment (MacCall, 2003)

Confounding influences

CPUE estimation in a mixed fishery

- Calculate effort for bocaccio
- Remove the influence of tuna
- Eliminate influence of fishing trends
- Understand stock dynamics

Subsetting the data

- Explicit: species assemblage
- Presence/Absence
- Logistic regression:

Maximum likelihood

MRFSS Data

Marine Recreational

Fishery Statistics Survey

- 1980-1989, 1993-1999
- Dockside survey
- NO location information

CDFG Data

- California Department of Fish and Game
- 1986-1998
- Onboard sampling with locations
- "Trip Data" Multi-site trips

Compare with MRFSS data

• "Site Data" Individual site visits

Compare Species/Location Criteria
Evaluating the Regression

- Do the coefficients make sense biologically?
- Which trips do we accept?

Choose a probability threshold

How many of our predictions are correct?

Critical Value Analysis

Probablity threshold for Bocaccio effort

CPUE Indices CDFG Sites

CPUE Indices CDFG Trips

CPUE Indices MRFSS

1998: a good year to fish Tuna

Target Switching

Species Regression moderates effects of target switching

Correct Predictions

- CDFG Site-visits
 - Species Regression 81.0 %
 Location 70.3 %
 - Location 70.3 %
- CDFG Fishing Trip (multi-site)
 79.4 %
- MRFSS Species Regression
- 84.5 %

- When habitats overlap too much?
- For certain types of target species?
- Too few regressors?
- Data too sparse?
- Change in habitat use?
- Population changes among species?

Pseudo-Fish

- Habitat groups
 - Onshore
 - Northern
 - * Ubiquitous

- Pelagic
- Southern
- Rocky Reef
- 2 5 species each group
- Randomly scattered from habitat center
- Fish falling outside the ocean swim away
- Species list at location is catch

Regression Diagnostics

- X^2 < degrees of freedom
- Range of regression coefficients
- Stability of regression coefficients
- Probabilities
- Predictions:

% Correct% False Positives% False Negatives

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Habitat Overlap

Target: Low-abundance Rocky Reef species

- When habitats overlap too much?
- For certain types of target species?
- Too few regressors?
- Data too sparse?
- Change in habitat use?
- Population changes among species?

Pelagic and Ubiquitous Targets

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Limited Data

	100%	10%	1%	0.1%
Coefficient Range	16.57	17.57	779.45	357.92
Maximum Probablility	0.92	0.96	1	1

Target: Low-abundance Rocky Reef species $\sigma^2 = 5$

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Regressors

	All 22	2	1	4 U
Coefficient Range	3.14	5.10	—	0.15
Maximum Probablility	0.90	0.61	0.15	0.17

Target: Low-abundance Rocky Reef species $\sigma^2 = 5$

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Change in Habitat Use

	% Correct
Early	93
Late	93
Full	87
Early model Late data	84

Target: Low-abundance migratory species $\sigma^2 = 3$

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Population Fluctuations

- Three Reef species increased 20% each year
- One N and Two S species declined 20% each year

Target: Low-abundance Rocky-Reef species $\sigma^2 = 5$

Method Failure

Violation of the habitat – species connection

Overlapping habitats

Ubiquitous targets

Ubiquitous regressors

Changing habitat use

Goodness of Fit Measures

- Magnitude of regression coefficients
- Stability of regression coefficients
- Over- vs. under-prediction
- X² smaller than degrees freedom
- Need to evaluate subsets of the data

Statistical Modelling GLM in R

Mauricio Ortiz NMFS SEFSC Miami Lab Sustainable Fisheries Div

What is Statistical Analysis ?

Understand Nature of data, need to answer

- Kind of response variable
- Type and nature of explanatory variables
- Data is what is "known"
 - Model fit to the data, NOT data fit to model!!
- Best model
 - Provides the least unexplained variation subject to constraints that all parameters are statistically significant
 - Principle of Parsimony: Minimal model but adequate

Maximum Likelihood

- Best model, conventions
 - Unbiased
 - Variance minimizing estimators
- Given the data & given our choice of model then ML
 - Provides values of parameters of that model that makes the DATA most likely

Principle of Parsimony

William of Occam:

- Given a set of equally good explanations for a given phenomenon, the correct explanation is the simplest one.
- Models should have as few parameters as possible
- Linear models should be preferred to non-linear models
- Experiments relying in few assumptions are preferred
- Models should be pared down until they are minimal

Null model	One parameter, overall mean, explanatory power none
Minimal adequate model	Simplified model 1 r^2
Maximal model	Complex model all factors, interactions & covariates, p' parameters
Saturated model	One parameter for each observation Explanatory power none

Data for statistical models

Types of Data

- From experimental planned designs
 - All combinations equally represented
 - Controlled explanatory variables
 - Orthogonal in nature
 - Order of explanatory variable in model not important
- From observation studies
 - No control over number of individuals/observations
 - Missing combination treatments
 - Many likely correlated explanatory variables
 - Non-orthogonal data
 - Order of explanatory variable in model important

Model simplification

1	Fit maximal model	Fit all factors, interactions, covariates
2	Begin model simplification	Remove least significant terms first, starting with highest-order interactions
3	If deletion causes an insignificant increase in deviance	Leave that term out, inspect the parameter values again Remove the least significant term remaining
4	If deletion causes a significant increase in deviance	Put term back in the model These are the statistically significant terms
5	Keep removing terms from the model	Repeat steps 3 & 4 until only significant terms remain in the model. This is the minimal adequate model.
Purpose of Predictive Modeling

To predict a response variable using a series of explanatory variables.

Traditional methods focus on the parameters, modeling requires the analyst to consider the validation of the parameters.

Purpose of Predictive Modeling

To produce a sensible model that explains recent historical experience and is likely to be predictive of future experience.

Traditional methods tend to create unnecessarily complex structures that tend to overfit the data.

Generalized Linear Models

GLMs generalize the traditional regression models by introducing nonlinearity through the link function and loosening the normality assumption

GLMs

More formally:

GLMs

The general solution for the GLM parameters:

$$\hat{\beta}^{(r)} = \left[\mathbf{X}^{\mathrm{T}} \mathbf{W}^{(r-1)} \mathbf{X} \right]^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W}^{(r-1)} \left\{ \hat{\eta}^{(r-1)} + g' \left(\hat{\mu}^{(r-1)} \right) \times \left(y - \hat{\mu}^{(r-1)} \right) \right\}$$

Where:

$$W^{(r)} = diag \begin{cases} \omega \\ g'(\hat{\mu}^{(r)})^2 \times V(\hat{\mu}^{(r)}) \end{cases}$$

and:
Link function
$$g = h^{-1} \\ \eta = g(\hat{\mu}) \\ \hat{\mu}^{(r)} = X\beta^{(r)} \\ \omega = weights$$

_ _ _ _ _ _ _ _

GLM Building Blocks: Link Functions

y = h(Linear Combination of Factors) + Error

Link function (g=h⁻¹) chosen base on how the factors are related to produce the "best" signal/response:

- Log: variables related multiplicatively (e.g., risk modelling)
- Identity: variables related additively (e.g., risk modelling)
- Logit: retention or risk modelling
- Reciprocal: canonical link for gamma distribution (e.g., severity modelling)
- Mixed: additive/multiplicative rating algorithms

GLM Building Blocks: Link Functions

Link function relates the independent predictors to the response in a non-linear form :

- Pure Multiplicative – Log

$$\hat{\mathbf{Y}} = \boldsymbol{\eta} = \exp(\mathbf{X}\boldsymbol{\beta})$$

- Pure Additive - Identity

$$\hat{Y}=\eta=X\beta$$

- Logit

$$\hat{\mathbf{Y}} = \boldsymbol{\eta} = \frac{1}{1 + e^{-(\mathbf{X}\boldsymbol{\beta})}}$$

- Reciprocal

$$\hat{Y} = \eta = \frac{1}{X\beta}$$

GLM Building Blocks: Error distribution

y = h(Linear Combination of Factors) + **Error**

Reflects the variability of the underlying process

- Gamma consistent with skewed response modelling, also Inverse Gaussian

 Poisson consistent with frequency modelling

 Tweedie distribution consistent with zero and positive response modeling

Normal useful for a variety of applications

GLM Building Blocks: Error distribution Additional Variance Functions

Error structure is also used to incorporate assumptions about the uncertainty and the predicted value

Observed Response	Error Structure	Variance Function V(μ)	Scale Parameter ϕ
	Normal	μ ^ο	σ
Frequency counts	Poisson	μ	1
Skewed response	Gamma	μ²	α
Increase zero proport	Tweedie	μ ^τ	μ ^τ
Binary response	Binomial	μ (1-μ)	1
Counts	Over-dispersed Poisson	μ	к
Highly skewed response	Inverse Gaussian	μ³	α

y = h(Linear Combination of Factors) + Error

- Include variables that are predictive, exclude those that are not
 - Gender may not have major impact on catch rates
- Simplify some explanatory factors, if full inclusion not necessary
 - Some levels within a particular predictor may be grouped together (e.g., number of holding tanks)
 - A curve may replicate the signal (sex ratio)
 - Scoring levels to combine rating factors into a single concept thereby untangling impacts of various factors (e.g. vessel electronics)
- Complicate model if the relationship between levels of one variable depends on another characteristic
 - The difference between males and females depends on age

Complicating the Model: Interactions

- Interactions are required when the combined effect of multiple levels of two different independent explanatory factors is different than the additive effect of the simple parameters.
- Interaction topics
 - Interactions versus correlations
 - Identifying interactions
 - Full and partial interactions
 - Simplifying interactions

year

year

> interaction.plot(....)

D

Distribution observations by:

уеаг

Distribution observations by:

> mosaic.plot(....)

Distribution observations by:

year

Distribution observations by:

уеаг

Measurements of Fit

Deviance

• A measure of the discrepancy between the observed values and the predicted by the model. Is estimated as the double difference between the Maximum Likelihood possible (i.e. one parameter for each observation) and the Maximum Likelihood of the model evaluated.

$$if: \hat{\theta} = \theta(\mu) \quad and \quad \widetilde{\theta} = \theta(y); n = p$$

$$a_i(\phi) = \frac{\phi}{w_i} \quad dispersion \ parameter$$

$$D(y, \mu) = 2\log \frac{L(y; y)}{L(\mu; y)}$$

$$D(y; \hat{\mu}) / \phi = \sum 2w_i \left\{ y_i(\widetilde{\theta}_i - \hat{\theta}_i) - b(\widetilde{\theta}_i - \hat{\theta}_i) \right\} / \phi$$

Measurements of Fit

Normal
$$\sum (y - \hat{\mu})^{2}$$

Poisson
$$2\sum \{y \log(y/\hat{\mu}) - (y - \hat{\mu})\}$$

Binomial
$$2\sum \{y \log(y/\hat{\mu}) + (m - y) \log((m - y)/(m - \hat{\mu}))\}$$

Gamma
$$2\sum \{-\log(y/\hat{\mu}) + (y - \hat{\mu})/\hat{\mu}\}$$

InvGaussian
$$\sum (y - \hat{\mu})^{2}/(\hat{\mu}^{2}y)$$

Pearson X² statistic

another measure of discrepancy

$$X^{2} = \sum \left(y - \hat{\mu} \right)^{2} / V(\hat{\mu})$$

Deviance Analysis

- Extension of the Analysis of Variance to the GLM that allows to evaluate the statistical effects of factors and its interactions.
- However, in GLMs the parameters in the model are not orthogonal, because the transformation through the link function is not necessarily linear.
- The difference in deviance is used as a measure of discrepancy between successive models.

.... Deviance Analysis

- In theory, if we consider Mo ⊂ M as a sub model with q
- Knowing the dispersion parameter σ^2 , the statistic given by the difference of deviance between both models scaled by σ^2 , follows an approximate Chi-square distribution with p q degrees of freedom.

$$\frac{(D_{Mo} - D_M)}{\sigma^2} \approx \chi_{p-q}^2$$

.... Deviance Analysis Table

GLM Diagnostics

- Model diagnostics introduce verification in the statistical analysis process to assure that the selected model is the appropriate one given the data analyzed.
- Model checking primarily for
 - Systematic departure of the model assumptions,
 - Observations that are discrepant or inconsistent from the rest of the data (outlier analysis).
- The model checking techniques fall into two groups:
 - Informal: those that relay on subjective human decision to determine patterns or better, departure from expected patterns.
 - Formal techniques that imply a wider model (where the "selected current model" is a subset) with higher number of parameters. In this case, the current model passes the check if it can demonstrate that the extra parameter(s) in the wider model did not improve the fitting of the data. McCullagh and Nelder (1989)

Model Diagnostics

IMPORTANT

After evaluating the model fit and significance of the explanatory variables, it is imperative to complete the analysis with a model diagnostics to confirm the model assumptions and to detect outliers.

Model checking elements

- Model checking originally developed for classical linear models, and then McCullagh and Nelder (1989) extended it to Generalized Linear Models (GLMs).
- Analysis of residuals are the primarily element for model checking, however other components in GLM checking include the fitted values, the linear predictors, the residual variance, the dispersion parameter and the elements of the projection ('hat') matrix.

Residuals

Main tool for determining the fit of the model. Types of residuals

- <u>Response residuals</u>: difference between the observed values and the estimated values by the model.
- Working residuals: difference between the response variable and the linear predictor estimated.
- <u>Deviance residuals</u>: measure the contribution of each observation to the total model deviance.
- <u>Pearson residuals</u>: response residuals weighted by the estimated variance of the model.

$$r_i = (y_i - \hat{\mu}_i)$$

$$r_{w_i} = (y_i - \hat{\mu}_i) \frac{\partial \hat{\eta}_i}{\partial \hat{\mu}_i}$$

$$r_{D_i} = sign(y_i - \hat{\mu}_i)\sqrt{d_i}$$

$$r_{P_i} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

... residuals

Re-scaling residuals.

<u>Standardized / Studentized residuals:</u> residuals scaled by the variance or dispersion parameter and the corresponding "hat" element

- Studentized Deviance residuals
- Studentized Pearson residuals

Jacknife or deletion residuals

represent the difference between the observed response for case *i* and the response predicted from the model excluding case (*i*) observation

$$r_{Ds_i} = \frac{r_{Di}}{\sqrt{\hat{\Phi}(1-h_i)}}$$

$$r_{Ps_i} = \frac{y_i - \hat{\mu}_i}{\sqrt{\hat{\Phi}V(\hat{\mu})(1 - h_i)}}$$

$$r_{J(i)} = \frac{y_i - \hat{y}_{(i)}}{\hat{\sigma}_{(i)}\sqrt{(1 - h_i)}}$$

Model checking for systematic departure of the model assumptions

1. Random component [Error distribution]

- Plot of standardized deviance residuals against the predicted values. For distributions other that the Normal, the predicted values should be transform to a constant scale
- The expected pattern is a uniform and constant range distribution of the residuals around the mean zero value

Departures

Curvature of mean trend indicates: incorrect link function wrong scale of one or more covariates omission of higher order terms in the model Non-constant range of residuals incorrect variance function

Plot 1 Random component [Error distribution]

Error Distribution diagnostic plot

Model checking for systematic departure of the model assumptions

2. Diagnostic for the variance function

Plot of the absolute value of residuals against the fitted values, transformed to a constant information scale.

The expected pattern is a plot without tendency in the residuals. A positive trend indicate that the observed variance increases much more rapidly than the model assumed variance.

Departures

Positive trend indicates that the variance function increases too slowly compare to the mean values of the data Negative trend indicates variance function increases much faster than the

mean values of the data

2. plot for the variance function

fitted values cte info scale

Model checking for systematic departure of the model assumptions

3. Diagnostic for the link function

Plot of the adjusted dependent variable against the linear predictor.

The expected pattern is a linear trend.

Departures

curvatures in the plot trend indicate a low or high power in the exponential link assumption

non-informative for binary data

In general when the number of observations is high, trends can be inferred by using 'smoothers' such as the Loess function.

3. Plot for the link function

Link function diagnostic plot

Model checking for systematic departure of the model assumptions

4. Diagnostic for the scale of explanatory covariates / factors

Plot of the standardized deviance residuals against the explanatory variable.

The expected pattern is a constant range distribution with mean of zero.

Departures

Missing interactions or higher order terms in some factor(s)

incorrect scale for explanatory variable

incorrect link function

<u>Alternative</u> plot: Partial residual plot for each factor/covariate. null pattern is a linear trend (continuous covariates only).

4. Plot for the scale explanatory variables

area

Δ

-Linear predictor $\hat{\gamma}$

Transformations to constant information scale of error distribution

 $\hat{\mu}$ Normal error $2\sqrt{\hat{\mu}}$ Poisson error $2/\sin(\sqrt{\hat{\mu}})$ Binomial error $2\log \hat{\mu}$ Gamma error $-2/\sqrt{\hat{\mu}}$ Inverse gaussian

Model checking for Observations that are discrepant or inconsistent from the rest of the data

Residual analysis focus on the influence and/or "leverage" of a given observation and the effect on the parameters estimated by the model.

Leverage:

- Diagonal elements of the 'hat' matrix
- They represent the influence of a given point in the fit, large value of h_i indicates that the fit may be sensitive to the response observation *i*.
- A plot of leverage values indicating those values of $h_i > 2p/n$ is an informative tool.

Influence:

- Influence is normally measured as weighted combination of the changes of estimates with and without a given extreme point.
- Cooke (1977) introduce an statistic, 'Cook distances' that approximates the residual scaled difference between the model fit with observation response for case *i* and the model fit without the observation *i*.

Cook's distance

Influence

Residual analysis

D

leverage cutoff small < 8/(n-2p) < large

influence cutoff small < 2p/(n-2p) < large

where n = number observations, p = number parameters

> halfnorm plots (....) library faraway

> plot(glm.object)

D

Comparison alternative model structure fits to billfish catch rates PLL fishery

Comparison alternative model structure fits to billfish catch rates PLL fishery

Predicted values transformed to a constant scale

Comparison alternative model structure fits to billfish catch rates PLL fishery

Final model Testing

IMPORTANT

After evaluating the model fit and significance of the explanatory variables, it is imperative to complete the analysis with a model diagnostics to confirm the model assumptions and to detect outliers.

Testing final model predictiveness: Sampling

1. Training and Testing

Testing final model predictiveness: Bootstrapping

2. Bootstrapping

D

Not OK

Conclusions

Selecting a model class and fit the data

- Just the beginning of Statistical Analysis
- Model diagnostics
 - An important component to validate statistical model assumptions
 - Two main topics
 - Systematic departures of the model assumptions
 - Isolated departures of observations
 - Model testing
 - Cross-validation
 - Model robustness
- Final Model ...

Science, Service, Stewardship

A Review of Index Weighting Schemes for Stock Assessments

Clay E. Porch

October 20, 2008

NOAA FISHERIES SERVICE

Why it matters: A simple example

MODEL:

$$\begin{split} &U_y = q(N_0 + G^* y) + \varepsilon_y \\ &P(\varepsilon_y) \sim Normal(0,\sigma) \\ &P(U_y) \sim Normal(q(N_0 + G^* y),\sigma) \\ &L(U_1, U_2, \dots, U_n) = P(U_1)P(U_2) \dots P(U_n) \text{ if i.i.d.} \end{split}$$

ESTIMATION:

 $MAX_{G,q,\sigma_a} L(U_{a1},U_{a2},\ldots,U_{an})$

If there exists an efficient unbiased estimator, the maximum likelihood method will produce it

Why it matters: A simple example

 $-\ln L(U_{1y}, U_{2y}) = \sum 0.5^{*}[U_{1y}-q_{1}(N_{0}+Gy)]^{2} / \sigma_{1}^{2} + \ln(\sigma_{1}) + \\ \sum 0.5^{*}[U_{2y}-q_{2}(N_{0}+Gy)]^{2} / \sigma_{2}^{2} + \ln(\sigma_{2})$

Parameters $q_1, q_2, \sigma_1, \sigma_2, G$

- 1) Set σ equal to arbitrary constant
- 2) Minimize -InL function over both q and σ
- 3) Minimize concentrated likelihood function for σ over q

SOLVER DEMO

EQUAL (fixed or estimated σ)

U_j's must be the same average magnitude

•Normal (additive) implies constant variance

$$\sum_{i,y} 0.5 \left(\frac{U_{j,y} - \hat{U}_{j,y}}{\sigma} \right)^2 + \ln(\sigma)$$

•Lognormal (multiplicative) $\sum_{\substack{j,y \\ \text{variance (constant CV)}}} 0.5 \left(\frac{\ln U_{j,y} - \ln \hat{U}_{j,y}}{\sigma \{\ln U\}} \right)^2 + \ln (\sigma \{\ln U\})$

No-rescaling necessary

WEIGHTING SCHEMES ARE TIED TO THE ASSUMED ERROR STRUCTURE

MLE (iterative reweighting, concentrated likelihood, direct search)

•Normal (additive) = constant variance

$$\sum_{j,y} 0.5 \left(\frac{U_{j,y} - \hat{U}_{j,y}}{\hat{\sigma}_j} \right)^2 + \ln(\hat{\sigma}_j)$$

$$\hat{\sigma}_{j} = \frac{1}{n} \sum_{y} \left(U_{j,y} - \hat{U}_{j,y} \right)^{2}$$

j,y

 Lognormal (multiplicative) = constant log-scale variance (constant CV)

$$\sum_{j,y} 0.5 \left(\frac{\ln U_{j,y} - \ln \hat{U}_{j,y}}{\hat{\sigma}_j \{\ln U\}} \right)^2 + \ln \left(\hat{\sigma}_j \{\ln U\} \right)$$

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

•EQUAL (fixed or estimated σ)

•MLE (iterative reweighting, direct search, concentrated likelihood)
 •INPUT VARIANCE (σ derived externally)

$$0.5\sum_{j,y} \frac{\left(U_{j,y} - \hat{U}_{j,y}\right)^{2}}{\sigma_{j,y}^{2}} + \ln(\sigma_{j,y}^{2})$$

Note: σ may be derived from sample size as from GLM, expert opinion, area covered, etc....

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

•EQUAL (fixed or estimated σ)

•MLE (iterative reweighting, direct search, concentrated likelihood)
 •INPUT VARIANCE (σ derived externally)

•ADDITIONAL VARIANCE (σ derived externally, ω estimated)

$$0.5\sum_{j,y} \frac{\left(U_{j,y} - \hat{U}_{j,y}\right)^{2}}{\sigma_{j,y}^{2} + \hat{\omega}_{j}^{2}} + \ln\left(\sigma_{j,y}^{2} + \hat{\omega}_{j}^{2}\right)$$

Note: if observation error is independent of process error, then the variance should be additive

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

•EQUAL (fixed or estimated σ)

MLE (iterative reweighting, direct search, concentrated likelihood)
 INPUT VARIANCE (σ derived externally)

•ADDITIONAL VARIANCE (σ derived externally, ω estimated)

•MULTIPLICATIVE VARIANCE (σ derived externally, ω estimated)

$$0.5\sum_{j,y} \frac{\left(U_{j,y} - \hat{U}_{j,y}\right)^{2}}{\hat{\omega}_{j}^{2} \sigma_{j,y}^{2}} + \ln\left(\hat{\omega}_{j}^{2} \sigma_{j,y}^{2}\right)$$

Note: useful if one trusts σ as a measure of relative precision from one year to the next (but not necessarily across indices)

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

•EQUAL (fixed or estimated σ)
•MLE (iterative reweighting, direct search, concentrated likelihood)
•INPUT VARIANCE (σ derived externally)
•ADDITIONAL VARIANCE (σ derived externally, ω estimated)
•MULTIPLICATIVE VARIANCE (σ derived externally, ω estimated)

Instead of estimating ω (or σ) one can solve for them such that average variance is the same for each series (equal-weighting of sorts, but maintaining inter-annual variation)...

or come up with your own mischievous combinations!

Fitting fisheries models to standardised CPUE abundance indices (Maunder and Starr, 2003)

- Equal weighting vs. Input variance weighting
- Simple biomass dynamic model with known survival, constant recruitment, single estimated parameter (virgin biomass)
- Simulated raw CPUE and ran it through standardization procedure (obtain year-specific CV's)
- Fit simple biomass model to indices using equal weighting and input variance weighting
- **Results indicate** additional bias and reduced precision will be introduced into the population parameter estimates if the CV's differ between abundance indices and this difference is not incorporated into the fitting procedure.

Comparisons of index weighting schemes for tuned virtual population analyses (Legault and Porch, 2001)

- Equal weighting vs. maximum likelihood weighting
- Simulated bluefin tuna data 1970-1997
 8 indices with 25% or 50% CV
 different age ranges (age-specific vs. combined ages)
 different estimation schemes for terminal F parameters

Results indicate no clear pattern in the bias or uncertainty of estimates between the two weighting schemes

Comparisons of index weighting schemes (general considerations)

- Fixed variances based on external considerations may not account for all sources of uncertainty
- Estimating variances (or components of variances)

 -can have too many parameters (asymptotic properties)
 -estimates are conditioned on model structure
 -variance estimation complicated when multiple types of data are used (must specify ratios: e.g., σ_{catch}/σ_{index})
- Insufficient testing to make general conclusions

Qualitative evaluation of CPUE series used for west Atlantic bluefin stock assessment (Suzuki, 2001)

- Notes that weighting methods generally discussed in context of precision among abundance indices, but not their relative accuracy
- Relative accuracy is more important
- Qualitative ranking of indices (example Western Bluefin tuna)

Fishery	Canada	USRR	JLLGOM	JLLNW	USLLGOM	Larval	
Area	1	2	5	1	4	4	
Time	2	2	5	3	3	3	
Change in operational	2	2	5	4	1	5	
aspects							
Total	5	6	15	11	8	12	

POSSIBLE CRITERIA FOR SELECTING A METHOD (e.g., McAllister et al 2001)

A priori criteria

Flow chart?

1. Are year to year variations in uncertainty likely to be substantial and measurable for a given index?

-reliable measures of relative uncertainty? (e.g., GLM)

-reliable measures of absolute uncertainty? (e.g., designed-based)

2. Does the level of uncertainty likely vary substantially among indices?

-is available expertise sufficient and able to reach consensus ranking -is candidate estimation method well-understood (widely-practiced, simulation tested, easily applied in current assessment framework) 1

POSSIBLE CRITERIA FOR SELECTING A METHOD (e.g., McAllister et al 2001)

A posteriori criteria

1. Does the method accord unrealistically high or low variance to some data series?

-What level should be deemed unrealistic?

- 2. Do the estimates of variance strongly disagree with expert judgment on the relative reliability of each series as an index of abundance
- 3. Are estimates statistically defensible

-goodness of fit (e.g., Chi-square deviance statistic) -model selection criteria (e.g., AIC) Minimum Requirements for the Indices Working Group Report Section

> Julie A. Neer SEDAR Coordinator

Indices Procedural Workshop Miami, FL October 2008

INDICES GROUP TERM OF REFERENCE

Provide measures of population abundance that are appropriate for stock assessment.

- Consider all available and relevant fishery dependent and independent data sources.
- Document all programs evaluated, addressing program objectives, methods, coverage, sampling intensity, and other relevant characteristics.
- Provide maps of survey coverage.
- Develop CPUE and index values by appropriate strata (e.g., age, size, area, and fishery); provide measures of precision and accuracy.

Evaluate the degree to which available indices adequately represent fishery and population conditions. *Recommend which data sources are considered adequate and reliable for use in assessment modeling.*

REPORT OUTLINE

•Measures of Population Abundance

1. Overview (Group membership, leader, issues)

2. Review of Working Papers

3.Fishery Independent Surveys

- Methods, Gears, and Coverage (Map Survey Area)
- Sampling Intensity Time Series
- Size/Age data
- Catch Rates Number and Biomass
- Uncertainty and Measures of Precision
- Comments on Adequacy for assessment

4.Fishery-Dependent Measures

- Methods of Estimation
- Sampling Intensity
- Size/Age data
- Catch Rates Number and Biomass
- Uncertainty and Measures of Precision
- Comments on Adequacy for Assessment

5.Consensus Recommendations and Survey Evaluations

- 6.Research Recommendations
- 7.Itemized list of tasks for completion following workshop

(Include expected completion dates and responsible parties)

- 8. Literature Cited
- 9. Tables

10. Figures

Weighting guidance

INDICES SUMMARY

INDEX VALUES

Indices Summary Tables

Table 5.1.	A summary of	catch-effor	rt time series	available for	the SEDAR 15 data worksho	op.		
Fishery								
Type	Data Source	Area	Years	Units	Standardization Method	Size Range	Issues	Use?
Recreational	Headboat	Atlantic	1976-2006	Number per angler-hr	Stephens and MacCall; delta- lognormal GLM	Same as fishery	Fishery dependent	Y
Commercial	Handline	Atlantic	1993-2006	Pounds per hook-hr	Stephens and MacCall; delta- lognormal GLM	Same as fishery	Fishery dependent	Υ
Recreational	MRFSS	Atlantic	1983-2006	Number per angler-trip	Angler-trips included if species was targeted or caught (A+B1+B2); Nominal	Same as fishery	Fishery dependent	Y
Independent	MARMAP Chevron trap	Atlantic	1988-2006	Number per trap-hr	Nominal	_	Low sample sizes; freq. annual zero (n = 4 to 41 per year)	Ν
Independent	MARMAP Hook and line	Atlantic	1979-2002	Number per hook-hr	Nominal	_	Low sample sizes; freq. annual zeros (n = 0 to 39 per year)	Ν
Independent	MARMAP Short longline	Atlantic	1980-2006	Number per hook-hr	Nominal	_	Low sample sizes; freq. annual zeros (n = 0 to 10 per year)	Ν
Independent	SEAMAP	Atlantic	1990-2006	Number per hectare	Nominal	_	Extremely low sample sizes; mostly annual zeros (n = 0 to 4 per vear)	Ν
Independent	USC Baruch Institute nekton survey	South Carolina	-	_	_	_	n = 0	Ν

Indices Summary Tables

Table 5.2. Issues with	each data set considered for CPUE.									
Fishery dependent ind	ices									
Commencial Lookaala Handling (Becommended Annua)										
Commercial Logbook	- Handline (Recommended for use)									
Pros:	Complete census									
	Covers entire management area									
	Continuous, 14-year time series									
	Large sample size									
Cons:	Fishery dependent									
	Data are self-reported and largely unverified									
	Little information on discard rates									
	Catchability may vary over time and/or abundance									
Issues A	Addressed:									
	Possible shift in fisherman preference [Stephens and MacCall (2004) approach]									
	In some cases, self-reported landings have been compared to TIP									
	T_{a} in the second relation T_{a} is a second relation T_{a} in the second relation T_{a} is a second relation T_{a} is									
	technology or knowledge) can be addressed in the assessment									
	model									
	lilodel									
Recreational Headboa	t (Recommended for use)									
Pros:	Complete census									
	Covers entire management area									
	Longest time series available									
	Data are verified by port samplers									
	Consistent sampling									
	Large sample size									
	Non-targeted for focal species									
Cons [.]	Fishery dependent									
	Little information on discard rates									
	Catchability may vary over time and/or abundance									
Issues	Addressed:									
p	ossible shift in fisherman preference [Stephens and MacCall (2004)									
1	approach]									
Т	approach] he impression of some people that trip duration has shifted toward									
-	half day tring is not consistent with the data (Evaloratory data									
	mail-day trips is not consistent with the data (Exploratory data									
	tring overall. In addition, trin duration is accounted for as a factor									
	in the GLM)									
T.	ni nie OLWL) posasos in estabability over time (e.g., due te advenses in									
11	technology or knowledge) can be addressed in the assessment									
	medel									
1	model									

SEDAR 15

Indices Summary Tables

Data Data Data Data Dispect Filting Solicitity Age Megative Description Alling, for Salutis No.# Anne. LC00106 6 Dispect Filting, for Solicitity Age Market No.# Market Market Market Market Market Market Market Market Market	Table 3.1. A summary of catch series available for review at the LCS 05/06 Data Workshop.															
Spectral Surface Author Region Auton Auton Auton Dige Standardized Dig Standardized Dige Standardized </td <td></td> <td></td> <td></td> <td></td> <td>Data</td> <td></td> <td></td> <td></td> <td>Biomass/</td> <td>Fishery</td> <td></td> <td>Selectivity</td> <td>Age</td> <td></td> <td>Negative</td> <td>Utility for</td>					Data				Biomass/	Fishery		Selectivity	Age		Negative	Utility for
Shifts MC # Acea. CC0009 #Decarding properties and proper	Species	Series	Author	Reference	Source	Area	Years	Season	Number	Type	Standardized	Info	Range	Positive Aspects	Aspects	Assessment
58 LP8 Brown LC63066 Augic Vergin-Mon. Number Number Restantional Leagth by constraints None Independent LC3 Gillest Observer Celons LC53066 Stark drift Finith, DW-11 Stark drift Finith, DW-11 1993- Stark drift 1993- Constraint All Number Cemmatrial Leagth by constraint None stark/size (constraint) None stark/size (Sharks	NC#	Anon.	LCS05/06- DW-01	6 Directed longline bozts	North Carolina	1988- 1992	All	Biomzes Number	Commercial	GLM	None	None	Historic	Not species specific, low sample sizes, possible changes in fishing methodology not accounted for	Not recommended
LCS Gillawt Carlon LCSS 00-5 Shade sint Florida, gillast fishery Orse All Number Commercial Longation Longation Nees standards Attention used for antiger data (signed table) BT Gillawt Carlon LCSS 00-5 Slade data gillast fishery Florida, gillast fishery 1995- Conger All Number Commercial Longation Longation Nees standards Attenue with new effor columner, NUM LCS PCLL Carlons & LCSS 00-5 Stade data gillast fishery Spring, 2004 Number Longatod Longatod Nees standards Recen with new effor columner, NUM LCS PCLL Carlons & LCSS 00-5 PCNMPS NW Florida 1993- 2000 Spring, 2000 Number Longatod Longatod naturation of stanger Nees standards Recen with new effor columner, NUM Longatod LCSS 00-6 PCNMPS NW Florida 1993- 2000 Spring, 2000 Number Longatod Longetod Longatod <td< td=""><td>SB</td><td>LPS</td><td>Brown.</td><td>LCS05/06- DW-09</td><td>Angler interviews</td><td>Virginia-Mass.</td><td>1986- 2004</td><td>June- October</td><td>Number</td><td>Recreational</td><td>Le method</td><td>Length frequency</td><td>None</td><td></td><td></td><td>Usable, revisit ov calculation</td></td<>	SB	LPS	Brown.	LCS05/06- DW-09	Angler interviews	Virginia-Mass.	1986- 2004	June- October	Number	Recreational	Le method	Length frequency	None			Usable, revisit ov calculation
BT Gillast Observe Cerbse al DW-11 LCS006- DW-11 Skak drift glast fishery (Af) 1993- (Af) 1993- 2004 All Spring Summer, Summer, Fall Number Censeted Lossibility Lossibility Neese (based or blogenshiet)	LCS	Gillnet Observer	Carlson	LCS05/06- DW-11	Shark drift gillnet fishery	Florida, Georgia	1993- 1995, 1998- 2004	ΑII	Number	Commercial	Lo method	Length by mesh size (based on fishery independent stady)	None	standardizəd		Recun with new effort calculation, need to attempt calcs for all LCS scenarios
LCS PC LL Carlon & Befas LCS0006- DW-12 PC NDFS Loging NW Florids 1993- 2000 Spring Summar, Fall Number Independent Lo mathed Length frequency None Mone Unblagende frequency BT- Juvarile Carlon & Befas LCS0006- DW-12 PC NDFS LOS006- DW-12 PC NDFS DW-12 NW Florids 1993- Summar, Survey Number Independent Lo mathed Length frequency None Unbla LCS PC Gillast Carlon & Befas LCS0006- DW-12 PC NDFS NW Florids 1995- Survey Survey Number Independent Lo mathed Length frequency None Unbla LCS PC Gillast Carlon & Befas LCS0006- DW-12 PC NDFS NW Florids 1996- Surmar, Fall Number Independent Lo mathed Length frequency None Unbla BT PC Gillast Carlon at Befas LCS0006- DW-12 PC NDFS NW Florids 1996- Surmar, Fall Number Independent Lo mathed Length frequency None Unbla BT- Vrvmale DCGillast Carlon at Befas LCS0006- DW-12 PC NDFS NW Florids 1996- Surmar, Survey Spring Surmar, Survey Number Independent Lo mathed Length frequency <td>BT</td> <td>Gillnet Observer</td> <td>Carlson</td> <td>LCS05/06- DW-11</td> <td>Shark drift gillnet fishery</td> <td>Florida, Georgia (Atl)</td> <td>1993- 1995, 1998- 2004</td> <td>ΑII</td> <td>Number</td> <td>Commercial</td> <td>Lo method</td> <td>Length by much size (based on fishery independent study)</td> <td>None</td> <td>standardizəd</td> <td></td> <td>Recun with new effort calculation, restricted to Atlantic only</td>	BT	Gillnet Observer	Carlson	LCS05/06- DW-11	Shark drift gillnet fishery	Florida, Georgia (Atl)	1993- 1995, 1998- 2004	ΑII	Number	Commercial	Lo method	Length by much size (based on fishery independent study)	None	standardizəd		Recun with new effort calculation, restricted to Atlantic only
BT- Invasile PCLL Callon & Bedge LCS0106- DW-12 PCNNFS NWF locids Survey 1993- Survey Spring Survey Number Survey Independent Longth frequency None None Uable LCS PC Gillest Callon & Bedge Callon & DW-12 LCS0106- DW-12 PCNNFS NWF locids 2004 1996- 2004 Spring Survey Number Independent Longth frequency None Uable segency BT PC Gillest Callon & Bedge LCS0106- DW-12 PCNNFS NWF locids 2004 2004 Spring Survey Number Independent Longth frequency None Uable segency BT PC Gillest- Survey Callons at DW-12 LCS0106- OW-12 PCNNFS NWF locids 2004 2004 Spring Survey Number Independent Longth frequency None Uable BT- Yorwalle PC Gillest- Survey Callons at DW-12 LCS0106- OW-12 PCNNFS NWF locids 2004 2004 Spring Survey Number Independent Longth frequency Age 1 to 4 frequency Age 0 BT- YorY PC Gillest- Age 0 Callons at DW-12 LCS0106- Survey PCNNFS NWF locids 2004 2004 Spring Survey Number Independent Longth frequency Age 0 None <td>LCS</td> <td>PCLL</td> <td>Carlson & Bethea</td> <td>LCS05/06- DW-12</td> <td>PC NMFS Longline Survey</td> <td>NW Florida</td> <td>1993- 2000</td> <td>Spring, Sommer, Fall</td> <td>Number</td> <td>Independent</td> <td>Lo method</td> <td>Length frequency</td> <td>None</td> <td></td> <td></td> <td>Usable, need to attempt calcs for all LCS scenarios</td>	LCS	PCLL	Carlson & Bethea	LCS05/06- DW-12	PC NMFS Longline Survey	NW Florida	1993- 2000	Spring, Sommer, Fall	Number	Independent	Lo method	Length frequency	None			Usable, need to attempt calcs for all LCS scenarios
LCS PC Gillnet Cation & Behas LCS0/06- DW-12 PC NMFS Survey NW Florids 196- 2004 Spring Survey Number Independent Lo mathod Longth frequency None Usable, mode to ananyt calcs for all LCS screeners BT PC Gillnet Carlson & Behas LCS0/06- DW-12 PC NMFS Survey NW Florids 196- Survey Spring Survey Number Independent Lo mathod Longth frequency None Usable BT PC Gillnet - Juveniles Carlson ad Behas LCS0/06- DW-12 PC NMFS NW Florids 196- Spring Spring Surmmer, Fall Number Independent Lo mathod Length frequency None Usable BT- Juveniles PC Gillnet - Survey Carlson ad DW-12 LCS0/06- Behas PC NMFS NW Florids 196- 2004 Spring Surmmer, Fall Number Independent Lo mathod Length frequency Age-0 Usable BT-YOY PC Gillnet - Survey DW-12 PC NMFS NW Florids 196- 2004 Spring Surmmer, Fall Number Independent Lo mathod Length frequency Age-0 Usable SB PC Gillnet - Behas LCS0/06- DW-12 PC NMFS NW Florids 196- 2004 Spring Surmmer, Fall Number Independent <	BT- Juvenile	PCLL	Carlson & Bethea	LCS05/06- DW-12	PC NMFS Longline Survey	NW Florida	1993- 2000	Spring, Sommer, Fall	Number	Independent	Lo method	Length frequency	None			Usable
BT PC Gillast Carlino & Befase LCS00106- DW-12 PC NMFS Survey NW Florida Survey 1996- 2004 Spring, Surmace, Fall Number Independent Lo method Length frequency None Unable Unable BT- Juvenile DC Gillast - juveniles Carlino and Befase LCS00106- DW-12 PC NMFS Gillast NW Florida 1996- Survey Spring, Survey Number Independent Lo method Length frequency Age 1 to 4 years Usable BT- Juvenile Carlino and Age 0 LCS00106- DW-12 PC NMFS Gillnet NW Florida 1996- Survey Spring, Surmane, Fall Number Independent Lo method Length frequency Age 0 Usable SB PC Gillast - Befase LCS00106- DW-12 PC NMFS Gillast NW Florida 1996- Survey Spring, Surmane, Fall Number Independent Lo method Length frequency Age-0 Usable SB PC Gillast Carlson & Befase LCS00106- DW-12 PC NMFS Gillast NW Florida 1996- Survey Spring, Survey Number Independent Lo method Length frequency None Usable, an prominal serice LCS	LCS	PC Gillnet	Carlson & Bethea	LCS05/06- DW-12	PC NMFS Gillnet Survey	NW Florida	1996- 2004	Spring, Sommer, Fall	Number	Independent	Lo method	Length frequency	None			Usable, need to attempt calcs for all LCS scenarios
BT- Invenile PC Gillnet Juveniles Carlson and Befae LCS05/06- DW-12 PC NMFS Gillnet Survey NW Florida 1996- 2004 Spring, Summar, Fall Number Independent Lo method Length frequency Age 1 to 4 years Usable Usable BT-YOY PC Gillnet - Age 0 Carlson and Befae LCS05/06- DW-12 PC NMFS Gillnet NW Florida 1996- 2004 Spring, Summar, Fall Number Independent Lo method Length frequency Age 0 Usable SB PC Gillnet Carlson & Befaea LCS05/06- DW-12 PC NMFS Survey NW Florida 1996- 2004 Spring, Survey Number Independent Lo method Length frequency Age 0 Usable SB PC Gillnet Carlson & Befaea LCS05/06- DW-12 PC NMFS NW Florida 1996- 2004 Spring, Survey Number Independent Lo method Length frequency Age 0 Usable, as nominal series Usable, as nominal series Usable, as nominal series Usable, and not series Usable, only possible for total LCS Usable, only possible for total LCS Number Recreational Lo method None None Usable, only possible for total LCS <td>BT</td> <td>PC Gillnet</td> <td>Carlson & Bethea</td> <td>LCS05/06- DW-12</td> <td>PC NMFS Gillnet Survey</td> <td>NW Florida</td> <td>1996- 2004</td> <td>Spring, Summer, Fall</td> <td>Number</td> <td>Independent</td> <td>Lo method</td> <td>Length frequency</td> <td>None</td> <td></td> <td></td> <td>Uzable</td>	BT	PC Gillnet	Carlson & Bethea	LCS05/06- DW-12	PC NMFS Gillnet Survey	NW Florida	1996- 2004	Spring, Summer, Fall	Number	Independent	Lo method	Length frequency	None			Uzable
BT-YOY PC Gillnet - Age 0 Carlson and Bethes LCS05/06- DW-12 PC NMFS Gillnet Survey NW Florids 1996- 2004 Summar, Fall Number Independent Lo method Length frequency Age-0 Usable SB PC Gillnet Carlson & DW-12 PC NMFS Survey NW Florids 1996- Spring, Summar, Fall Number Independent Lo method Length frequency Age-0 Usable, as nominal series SB PC Gillnet Carlson & DW-12 PC NMFS Gillnet 1996- Spring, Summar, Fall Number Independent Lo method Length frequency None Usable, as nominal series LCS ENP Carlson et al. LCS05/06- DW-13 Angler, Everglades 1972- 2002 All (wet and dry ressonit) Number Recreational Lo method None None Usable, only possible for total LCS LCS ENP Carlson et al. LCS05/06- DW-13 Angler, interview Everglades 1972- 2002 All (wet and dry ressonit) Number Recreational Lo method None None Usable, only possible for total LCS LCS ENP Carlson et al. LCS05/06- DW-13 Everglades 1972- 2002 All (wet an	BT- Juvenile	PC Gillnet - juveniles	Carlson and Bethea	LCS05/06- DW-12	PC NMFS Gillnet Survey	NW Florida	1996- 2004	Spring, Summer, Fall	Namber	Independent	Lo method	Length frequency	Age 1 to 4 years			Uzable
SB PC Gillnet Carlson & Bethes LCS05/05- DW-12 PC NMFS NW Florids 1996- 2004 Spring, Summer, Fall Number Independent Longth frequency None Usable, as nominal series LCS ENP Carlson et al. LCS05/05- DW-13 Angler Everglades 1972- 2002 All (wet 2002 Number Recreational Lo method None None Usable, only possible for total LCS	BT-YOY	PC Gillnet – Age 0	Carlson and Bethea	LCS05/06- DW-12	PC NMFS Gillnet Survey	NW Floridz	1996- 2004	Spring, Summer, Fall	Namber	Independent	Lo method	Length frequency	Age-0			Usable
LCS ENP Carlson et al. LCS05/06- Angler Everglades 1972- All (wet Number Recreational Lo method None None Usable, only possible DW-13 interviews 2002 and dry for total LCS tessoons)	SB	PC Gillnet	Carlson & Bethez	LCS05/06- DW-12	PC NMFS Gillnet Survey	NW Floridz	1996- 2004	Spring, Summer, Fall	Number	Independent	Lo method	Length frequency	None			Usable, as nominal series
23	LCS	ENP	Carlson et al.	LCS05/06- DW-13	Angler interviews	Everglades	1972- 2002	All (wet and dry seasons)	Number	Recreational	Lo method	None	None			Usable, only possible for total LCS

Suggested Fields for Indices Description Summary Table

Series Name **Document** # **Data Source (longline obs; angler interview)** Area **Years** Season **Biomass/number** Units **Sampling Design** Fishery Type (FI, FD-R, FD-C) Standardization Method (GLM; Lo method; none) **Selectivity info** Age range Size range

Suggested Fields for Indices "Usefulness" Summary Table

Series Name Document # Pros Cons Issues Addressed Recommendation for use (Base, sensitivity, not)

Indices Values

Table 5.3 The recommended indices of abundance and the associated CVs. These are the raw indices scaled to the mean each time series (e.g. the mean value of each index = 1.0).

	Fi	Fisheries-dependent												
	Bottom Longline Video			Com	m LL	Com	m HL	HB (18" MSL)		HB (20" MSL)		MR	FSS	
Year	Index	CV	Index	CV	Index	CV	Index	CV	Index	CV	Index	CV	Index	CV
1986									0.7449	0.6107			0.6877	0.5493
1987									1.1838	0.4983			0.6576	0.5638
1988									1.0426	0.5136			0.9247	0.4661
1989									1.2184	0.5011			1.3183	0.4346
1990					0.7737	0.1327	0.6959	0.2279	0.8103	0.6458	0.8481	0.5446	1.8693	0.4526
1991					0.7786	0.1204	0.6475	0.2119			0.9423	0.5352	1.1475	0.4996
1992					0.6804	0.1333	0.7476	0.1961			0.7955	0.5576	1.2673	0.4226
1993			0.8879	0.1842	0.9729	0.1060	0.6832	0.1751			0.7635	0.5365	0.7809	0.4801
1994			0.8557	0.1531	0.8317	0.1037	0.8822	0.1664			0.8033	0.5433	0.9319	0.4468
1995			0.6481	0.2147	0.9769	0.1028	0.8712	0.1642			0.9190	0.5423	0.7691	0.5021
1996			0.9199	0.1602	0.8437	0.1029	0.6078	0.1704			0.7417	0.5698	0.6046	0.5141
1997			0.9445	0.1261	1.0119	0.0990	0.5657	0.1747			0.5691	0.5777	0.5448	0.5383
1998					0.9825	0.1013	0.5366	0.1745			0.6346	0.5745	0.7546	0.4446
1999					1.0022	0.1047	0.7175	0.1638			0.6312	0.5568	0.9295	0.4019
2000	0.5646	0.6673			0.9942	0.1013	0.9867	0.1583			0.8734	0.5499	1.0472	0.3967
2001	0.6539	0.2889			1.3186	0.0973	1.4534	0.1552			0.8444	0.5314	0.8691	0.3973
2002	1.6735	0.8118	1.1164	0.1012	1.0246	0.1011	1.5219	0.1518			0.9270	0.5296	0.9032	0.3919
2003	1.0420	0.2289			0.9776	0.1010	1.1400	0.1508			1.3753	0.4891	1.1128	0.3610
2004	1.3907	0.1925	1.2912	0.0865	1.2777	0.0982	1.7734	0.1477			2.0143	0.4701	1.6755	0.3046
2005	0.6753	0.5804	1.3365	0.0710	1.5529	0.0984	2.1694	0.1495			2.3172	0.4693	1.2045	0.3378
Table 3.2 Available catch rates series for the small coastal shark complex, Atlantic sharpnose, blacknose, bonnethead, and finetooth sharks. Absolute index is the absolute estimated mean CPUE, relative index is the estimated mean CPUE divided by the overall mean and the CV is the estimated precision of the mean value. Type refers to whether the index is fishery – independent (FI) or fishery-dependent (FD), recreational (R) or commercial (C). Recommendation refers to the recommendation by the Indices Working Group to include the particular index as a base index (Base), use it for sensitivity runs (Sensitivity) or not recommended for use in the assessment (NR); AS indicates the series is for an age-structured model (excludes young of the year individuals), SPM indicates a series useful for a surplus production approach. Series with no model indicated are useful for both approaches.

Small Coastal Shark Complex

					Index			
Document Number	Series Name	Туре	Recommendation	Year	Absolute	Relative	CV	
			_					
SEDAR 13-DW-05	PC LL	FI	Base	1993	0.517	0.843	0.507	
				1994	0.235	0.383	0.544	
				1995	0.343	0.559	0.483	
				1996	1.073	1.750	0.092	
				1997	0.594	0.969	0.185	
				1998	0.439	0.716	0.378	
				1999	1.170	1.908	0.116	
				2000	0.534	0.871	0.296	
SEDAD 12 DW/08	PC Gillost	EI	Page	1008	5 001	1 0 1 7	0.220	
SEDAR IS-DW-00	PC Olinet	ы	Dase	1007	14 715	5 251	0.230	
				1009	1 121	0.400	1.428	
				1000	1.121	0.410	1.952	
				2000	0.607	0.419	1.203	
				2000	1.007	0.248	0.722	
				2001	1.327	0.474	1.012	
				2002	1.10/	0.410	1.013	
				2003	1.404	0.019	0.008	
				2004	0.008	0.238	0.890	
				2005	0.011	0.218	0.040	
SEDAR 13-DW-09	Gillnet Obs	FD-C	Base	1993	3.014	0.149	0.879	
				1994	9.942	0.490	0.172	
				1995	10.934	0.539	0.218	
				1996				
				1997				
				1998	20.516	1.011	0.130	
				1999	12.287	0.606	0.109	
				2000	9.998	0.493	0.140	
				2001	5.548	0.273	0.220	
				2002	72.233	3.560	0.016	
				2003	11.597	0.572	0.133	
				2004	8.254	0.407	0.180	
				2005	58.842	2.900	0.029	

SEDAR 13

FIGURES

INDEX PLOTS

INDEX COVERAGE MAPS

CORRELATIONS/PAIRWISE COMPARISONS

INDEX PLOTS

Figure 3.1. Fishery dependent catch rate series for the original large coastal shark complex containing 22 species. Solid lines indicate base case indices while dashed lines are for series to be used in sensitivity analysis. Series are scaled (each series is divided by the mean of the years within that series which overlap between all series) to appear on a common scale.

INDEX PLOTS

Figure 3.2. Fishery independent catch rate series for the original large coastal shark complex containing 22 species. Solid lines indicate base case indices while dashed lines are for series to be used in sensitivity analysis. Series are scaled (each series is divided by the mean of the years within that series which overlap between all series) to appear on a common scale.

SEDAR 11

INDICES COVERAGE MAPS

INDICES COVERAGE MAPS

SEDAR 13

COMPARISONS

Figure 2.3.1. Pairwise scatterplots of the abundance indices used in fitting the base case for the Gulf of Mexico. SEDAR 16