SEDAR Procedural Workshop I I ndices I ntroduction Why are we here?

Julie A. Neer SEDAR Coordinator

I ndices Procedural Workshop

Miami, FL
October 2008

SEDAR Procedural Workshops

Designed to address issues the have come up repeatedly in multiple SEDARs

- issues raised by both reviewers and participants

Designed to improve areas in the process that are lacking

I mprove efficiency in preparation for workshops

- knowing what is expected

I ncrease quality of the product \& amount of feedback at DW

Summary of Issues

Selection Criteria

I ndices with conflicting trends supposedly tracking same stock or stock subset
Little or no evaluation of indices with respect to their relationship to and ability to track overall abundance
Discussion of correlations between indices

Weighting Schemes

Selection

Documentation

Maps of survey coverage
Summary presentations

SEDAR is a Council process

> many steps past the Review Workshop
> need to build a "legally defensible record" of decisions

- "excessive requirements" for Review but necessary for Council

My Role at this workshop:
$>$ SEDAR representative
$>$ Big picture

SEDAR Procedural Workshop - Indices

SEFSC, MIAMI, FL, Oct. 14-17, 2008

What makes a good index of abundance?

\square For fishery-independent:

- fishery-independent survey objectives
- sampling design
- species targeted
- life stage of target species at time of sampling
- time of year of survey
- areas where surveys are conducted
- length of time series
- conflicting trends with other independent and dependent indices

What makes a good index of abundance?

\square For fishery-dependent data:

- species targeted (including data reduction techniques)
- life stage of target species at time of fishery prosecution
- effects of data reporting errors
- time of year of fishery prosecution
- areas where fishery is prosecuted
- length of time series
- regulation and closure effects

गाI||||||||| Objectives of the workshop and resulting document:

address the above factors relative to numerous databases used in the SEDAR process
\square provide minimum requirements and an expected format for submission of SEDAR data workshop documents concerning development of abundance indices
\square determine desired criteria for selecting indices for inclusion in the assessment model
\square provide generalized and standardized computer code for developing abundance indices.
\square The major deliverable of this workshop will be a document providing guidelines for indices development and documentation and criteria for assessing the usefulness of individual indices for stock assessment purposes.

Tuesday, October 14th

1300 Introduction (Julie Neer and Walter Ingram)

1320 Overview of Large Scale Fishery Independent Surveys (Walter Ingram)
1350 Overview of Small Scale Fishery Independent Surveys (Cami McCandless and John Carlson)
1420 Discussion and Determination of Main Issues of Fishery Independent Surveys (everyone)

1450 Break

1500 Fisheries dependent commercial data and its use in constructing indices of abundance (Kevin McCarthy)
1530 Standardization of Recreational CPUE: data sources and issues (Craig Brown)
1600 Discussion and Determination of Main Issues of Fishery Dependent Surveys (everyone)

'||||||||||| A Brief Overview of Large-Scale, FisheryIndependent Surveys of NOAA Fisheries, MS Labs, in Relation to Development of Indices of Abundance, Problems and Solutions

Walter Ingram

Resource Surveys

\square Plankton Surveys
\square Trawl Surveys
\square Reef Fish Surveys
\square Longline Surveys

Plankton Surveys

\square SEAMAP spring plankton survey
\square SEAMAP fall plankton survey
\square SEAMAP winter plankton survey
\square SEAMAP piggyback plankton surveys (on groundfish surveys)

Comparative coverage of plankton sampling during SEAMAP resource surveys

 (prior to the 2007 winter survey in the eastern Gulf)

Plankton Surveys (FSSI Stocks)

\square SEAMAP spring plankton survey

- Brown shrimp, Red grouper, Greater amberjack, Gag, Yellowedge grouper, Snowy grouper, Black grouper, Nassau grouper
\square SEAMAP fall plankton survey
- Brown shrimp, Pink shrimp, White shrimp, Royal red shrimp, Red snapper, Red grouper, Vermilion snapper, Gray triggerfish, Hogfish, Red drum
\square SEAMAP winter plankton survey
- Royal red shrimp, Gag, Yellowedge grouper, Snowy grouper, Black grouper, Hogfish, Nassau grouper
\square SEAMAP piggyback plankton surveys (on groundfish surveys)
- Brown shrimp, Pink shrimp, White shrimp, Royal red shrimp, Red snapper, Greater amberjack, Gray triggerfish,

Plankton Surveys Concerns

\square Systematic Sampling Design

- Stations in 30-nmi grid
\square Winter plankton surveys intermittent
\square Indices typically have large CVs

Reef Fish Surveys

\square SEAMAP Trap/video survey
\square Madison-Swanson Monitoring
\square Oil Rig Monitoring

- Targets groupers, snappers, other Reef Fish FMP species.
- Two stage sampling. Primary Units are 10' Blocks of latitude and longitude. Ultimate sample units are reef sites.
-1992-1997; 2001-2002, 2004-2007

Oil/Gas Platform Survey
 TI
 III
 ,

Reef Fish Surveys (FSSI Stocks)

\square SEAMAP Trap/video survey

- Red snapper, Red grouper, Greater amberjack, Vermilion snapper, Gag, Gray triggerfish, Yellowedge grouper, Snowy grouper, Black grouper, Hogfish, Nassau grouper
\square Madison-Swanson Monitoring
- Same as above
\square Oil Rig Monitoring
- Red snapper

Reef Fish Surveys Concerns

\square SEAMAP Trap/video survey

- Decent time series length but with data holidays
- Limited Survey Area
- Indices typically have large CVs
\square Madison-Swanson Monitoring
- Limited survey area
- Relatively short time series
- Indices typically have large CVs
\square Oil Rig Monitoring
- Just started

Trawl Surveys

\square SEAMAP Fall groundfish trawl survey
\square SEAMAP Summer groundfish trawl survey
\square Small Pelagic high opening bottom trawl (HOBT) survey

Survey	Season	Gear	+
	Summer Groundfish	40' Shrimp	
Trawl	Fall Groundish	$\begin{aligned} & \text { 40' Shrimp } \\ & \text { Trawl } \\ & \hline \end{aligned}$	
	Exploratory Cruises	Varied	1
	${ }_{\substack{\text { Fall } \\ \text { Pelamaill }}}$	90' новт	

III|||||||| Fall Groundfish

II\||||||||| Summer Groundfish

Effort during Historic and current Small Pelagics Trawl Surveys

Trawl Surveys (FSSI Stocks)

\square SEAMAP Fall groundfish trawl survey

- Brown shrimp, Pink shrimp, White shrimp, Red snapper, Greater amberjack, Vermilion snapper, Gray triggerfish
\square SEAMAP Summer groundfish trawl survey
- Brown shrimp, Pink shrimp, White shrimp, Red snapper, Greater amberjack, Vermilion snapper, Gray triggerfish
\square Small Pelagic high opening bottom trawl (HOBT) survey
- Brown shrimp, Pink shrimp, White shrimp, Royal red shrimp, Red snapper, Greater amberjack, Vermilion snapper, Gray triggerfish

Trawl Surveys Concerns

\square SEAMAP Fall and Summer groundfish trawl survey

- Indices for certain species have large CVs
\square Small Pelagic high opening bottom trawl (HOBT) survey
- Decent time series length but with data holidays and changes in survey design
- Indices typically have large CVs

Longline Surveys
 \square Bottom Longline Survey
 \square Pelagic Longline Survey
 \square Regional, Coastal Longline Survey

	Year			
Survey	Season	Gear	 	$\stackrel{\text { n }}{\substack{\text { ¢ }}}$
Longline	Summer Spring	Bottom Longline Pelagic Longline		13 4
	Regional Inshore	Bottom Iongline		1

Survey area and sampling locations (indicated by crosses) in the Gulf of Mexico during National Marine Fisheries Service, Mississippi Laboratories fisheriesindependent bottom longline surveys, 1995-2006
 sharks collected during pelagic longline surveys conducted by NMFSIMSLABS. Sampling effort is indicated by crosses. CPUE of silky sharks collected during 2004, 2005 and 2006 is indicated squares, circles and diamonds, which are linearly related to the magnitude of the CPUE.

Longline Surveys (FSSI Stocks)

\square Bottom Longline Survey

- Red snapper, Red grouper, Greater amberjack, Vermilion snapper, Gag, Yellowedge grouper, Snowy grouper, Red drum
\square Pelagic Longline Survey
- King mackerel, Little tunny, Blue marlin, White marlin, Sailfish, Bigeye Tuna, Albacore, Bluefin tuna, Yellowfin tuna, Swordfish, Sandbar shark, blacktip shark, blacktip shark, Shortfin mako shark, Blue shark, Dusky shark
\square Regional, Coastal Longline Survey
- Red snapper, Greater amberjack, Red drum

Longline Surveys Concerns

\square Bottom Longline Survey

- The time-series were considered short as of the most recent stock assessments
- Indices typically have large CVs
\square Pelagic Longline Survey and Regional, Coastal Longline Survey
- Still in the developmental stages

T||||||||||| Overall Concerns of Large-Scale, FisheryIndependent Surveys
 \square Most prevalent concern - large CVs of the abundance indices

King Mackerel: Small pelagic survey

Red snapper: Bottom longline survey

King mackerel: SEAMAP Fall groundfish

What's it ultimately going to take?

Overview of Small scale Hishery Jndependent surveys

John Carlson
Stersc-Panama City, FL

Cami McCandless NEFSC-Narragansett, RJ

Why small scale?

- Sampling in diffierent spatial and temporal zones
- Most larger NOAA vessels unable to get into shallow areas or restricted to certain times of the year
, Different life stages
- Earlier life stages often found outside normal sampling areas
- Recruitment indices
- At times, only available information is from small scale surveys

Survey design

, Standardized to fullest extent possible

- Estab) lished stations
- Renclomly stratified by depth, grial, area, season
- Study specific
, Trawyls, Jonglines, gillinets, traps, hook and line, and vísual surveys
, Not stockwide but can be smaller segments of the species range
T Target species
- Gag (Koenig and Coleman 1998; Heinisch and Fable 1999)
- Sharks (Carlson and Brusher 1999, McCandless 2005, Drymon 2007)
- Red porgy (Devries 2006)
- Reef fish (Gomez 2000, Tobias et al. 2002, Mateo 2002)
- State surveys
- TX parks and Wildlife, SCDNR, FWC

Gag age-0 fishery independent index

Exanples of Geographic Coverage

Bonnethead Shark (Fishery Dependent)

Figure 3.6. Fishery-dependent catch rate series for bonnethead sharks. Solid lines indicate base case indices while dashed lines are for series to be used in sensitivity analysis. Series are sealed (each series is divided by the mean of the years within that series which overlap between all series) to
appear on a common scale.

Bonnethead Shark (Fishery Independent)

Issues with standardized surveys

- Gear changes
- Temporal and spatial coverage
, High proportion of zeros
, Gear selectivity
Uncontrollable environmental factors
. Funding/logistical issues - discontinuous or short time series, variable effort

Need for GLM standardization

GLM Standardization

- Models used:
- Log normal (cpue + x)
- Poísson
- Delta--lognormal
- Final model selected through stepwise elimination of factors

Results of the stepwise procedure for development of the catch rate model for juvenile age 1+ sandbar sharks captured by longline in Delaware Bay. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the di fference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

STIANDARDIZATION

, factors generally explain 5-15\% deviance in the final model
, Spatial factors and gear changes generally explain the greatest deviance from the null model from those factors examined

- Selection of factors may be important consideration

TLJM HELPS TO REMONE MNO SEN FROM SURVEM JNDJCES

GLM CORRECIION FOR BJAS

Finetooth shark

Environmental Factors

LCS05/06-DW-24
Figure 1. Relative indices of abundance for all blacktip and LCS sharks from Mississippi coastal water, 1998-2005.

More exploration of environmental factors (GAMS)

OTHER ISSUES

, Fighly skewed survey datea containing al targe portion of zeros

- Ignore
, Negative binomial
, Poisson
- Accommodate
, Delta-lognormal
- Model
- Zero-inflated negative binomial

Lack of examination of diagnostic plots
to test assumptions for an acceptable model fit

- Conflicting signals

Fisheries dependent commercial data for constructing indices of abundance

FISHERIES
SERVICE

Available commercial data sets: interview lobserver

Trip interview program (TIP)
Observer data
-Pelagic longline
-Shark bottom longline - Gulf and South Atlantic
—Shark gillnet observer
-Gulf reef fish
—Shrimp observer

FISHERIES
SERVICE

Available commercial data sets: self-reported

Trip ticket
Coastal logbook
Pelagic logbook - all US flagged vessels (HMS)
Puerto Rico sales tickets
USVI landings reports
Others:
-Golden crab logbook
-Wreckfish logbook
—Gulf shrimp statistics
—Atlantic shrimp

Available Data

Trained observer/sampler

-Accurate species identification
-Size information
—Other details of fishing behavior/conditions, e.g. fished at night, weather conditions, etc.
—Fine scale spatial information (observers)
-Total catch (observers)
—Discard information (observers)
-Accurate, detailed effort information (observers)
—Detailed gear configuration information
—Data are set-based (all longline observers, gillnets) or tripbased (TIP and gear other than longlines)

Available Data

Self reported

—Honest, few errors, reporting as instructed?
—Potential species misidentification (e.g. gag/black grouper)
—Species identified by species category (e.g. groupers) or worse
—Broad scale spatial information (except pelagic logbook)
—Landings (pounds) not total catch
—Some discard information (coastal \& pelagic logbooks)
-Effort information may be problematic (e.g. traps, bottom longlines)
—Data are trip based, set based in pelagic logbook
—Individual size information for some species in pelagic logbook

Compmercial data sets timeline

NOAA
 FISHERIES
 SERVIGE
 Spatial extent of commercial fishing data

Federal waters
States may have commercial data available (e.g. trip tickets)
Some gears restricted from certain areas (e.g. longline >20/50 fathoms, traps banned from Gulf)
Pelagic logbook - all US flagged vessels regardless of areas fished
Closed areas in some fisheries, including year-round and seasonal closures

NOAA

FISHERIES

SERVICE

Coastal logbook, TIP*, Wreckfish logbook, Shrimp observear

- Pelagic logbook*, Pelagic observer*
- Shark gillnet observer
- Trip ticket
- Golden crab logbook, South Atlantic shrimp
- Gulf reef fish observer, Gulf shrimp system
- Shark bottom longline observer

Spatial scale of reporting

All observer data at fine spatial scale (e.g. lat/lon at beginning and end of longline set)
Pelagic logbook at fine spatial scale
Coastal, wreckfish, golden crab logbooks; USVI landings; coarse spatial reporting
Trip ticket, Puerto Rico area fished not reported port/county landed reported
Depth information reported for observer data, logbooks, TIP, Puerto Rico, GSS
No depth information for trip tickets, USVI (distance from shore)

Gears reported

May be a single gear, e.g. pelagic longlines - pelagic longline observer data
May include many gears, e.g. 11 gears (plus 4 "other" categories) may be reported on the coastal logbook
Multiple gears = multiple indices from a data set

Hook hour or other fine scale effort measure
—Pelagic logbook
—All observer data
—TIP
—Caribbean landings (in some cases)
—Coastal logbook (handline/bandit rig, gill nets)
—Golden crab and wreckfish logbooks
—Shrimp landings/effort
Day at sea or per trip
—Trip ticket
-Caribbean landings?

Size range of individuals in commercial data sets

Limited by gear - e.g. traps may catch greater range of sizes than longline or they may merely be different size ranges
Observer data likely to include greater size range (catch) and will often have size information
TIP will have sizes of landed fish
Logbook data reports landings (for the most part) and will include only legal size fish, but size of individual fish not available - pelagic logbook does have lengths/weights of individuals

Commercial data advantages

Large sample size - coastal logbook >2.3 x 10^{6} records
Data for multiple gears - multiple indices that reflect broader size/age/spatial range of the stock
Spatially extensive - often much more so than fisheries independent data, data are from where the fish are abundant
Relatively long time series
Many species are reported - these data sets may be useful for many, if not all, assessments of exploited species (not much use for protected species, e.g. goliath grouper)

Commercial Data Issues/Limitations

Size distribution of caught/landed animals
Limited number of variables in the data sets
Discards, i.e. landings not catch
Individual data set caveats
Species misidentification/non-reporting
CPUE correlated with abundance?
Changing catchability
Defining targeting
Fishing regulations

Commercial fishing gear not a good sampling method for all size classes

At best the total catch is sampled and that likely will not include the smallest individuals
For many data sets (e.g. logbooks) the size structure of the landings is completely unknown other than the assumption that all animals (or nearly all) were legal size or larger

Limited number of variables in the data sets

Ability to characterize gears, vessels, areas fished, fishing behavior, etc. are all highly variable among data sets
Observer data typically contains more detailed information
Self-reported data includes less detailed gear configuration information - this varies from no information (e.g. trip ticket) to fairly detailed (e.g. pelagic logbook includes hook size/type/offset, bait type)
Self-reported data usually includes only coarse spatial detail or none (trip ticket, PR); exception is pelagic logbook with reporting at finer scale
Captain information (e.g. experience) often lacking

Total catch vs. landings

Total catch
-Observer data, may also include size of individual animals
-Coastal logbook trips that report discards, but landings are in pounds and discards are counted
-Pelagic logbook reports may include discards
Landings
-TIP
—Trip ticket
—All logbooks (except pelagic when discards reported)

NOAA
 FISHERIES
 SERVIGE
 Individual data set caveats

Some are more caveat rich than others, but all have their issues
Know your data, it will save time, potential embarrassment, and thousands of dollars in therapy

Should only be an issue with self-reported data, including self-reported discards
May be systematic or limited to individual fishers
Major issue with gag and black grouper
Unknown problem until SEDAR data workshop
Used TIP data to develop conversion factors that were applied to both landings and coastal

Especially problematic for commercial data, fishermen know how and where to catch fish
Most commercial data sets have poor measures of search time, if it can be estimated at all from the available data, so entire effort not included in most analyses
Changing spatial extent of the fishery may indicate changes in stock size even if CPUE is flat or increasing
This issue drove the queen conch assessment, or lack of one, in the Caribbean - short answer, it wasn't

Changing catchability

Poorly understood, topic for the next workshop
May vary with improvements in technology (e.g. GPS), gear changes (e.g. hook design), environmental conditions (e.g. red tides), and fisher experience (affects individual vessels as well as fisheries as a whole)
Observer data most likely to have some measures of potential causes of catchability change in available data

Targeting

Targeting may be reported for:
—Observer data (ask the captain)
-Pelagic logbook?
-TIP?
-Golden crab and wreckfish logbooks
-Shrimp landings and effort
Targeting information not directly available for:
-Trip ticket
-Caribbean landings/sales ticket
-Coastal logbook

FISHERIES
SERVICE

Targeting not reported, now what?

Gear configuration based approach
-Characterize gear configuration(s) of positive trips
—Include all trips with appropriate gear configuration
-May have limited information for gear configuration
—Ad hoc and subjective

Stephens-MacCall

NOAA
 FISHERIES
 SERVICE

 Possible effects of

 Possible effects of regulations on the regulations on the construction of construction of indices of abundance

 indices of abundance}

Indices potentially affected: all constructed from fishery dependent data
Regulatory measures of concern:
-Regulatory boundaries - spatial and temporal
—Minimum size limits
-Fishery closures
—Bag/trip limits

NOAA

FISHERIES
SERVICE

Regulatory boundaries

NOAA

FISHERIES

SERVICE

Zones used in commercial indices

NOAA

FISHERIES
SERVICE

King mackerel commercial fishing regulations: effective dates of minimum size limits

Size Limit	W-GOM	FLWC	FLWC-N	FLWC-S	KEYS	FECZ	SA
$12^{\prime \prime}$	$7 / 1 / 1990$	$7 / 1 / 1990$	n/a	n/a	$4 / 1 / 1990$	$4 / 1 / 1990$	$4 / 1 / 1990$
$20 "$	$7 / 1 / 1992$	$7 / 1 / 1992$	n/a	n/a	$4 / 1 / 1992$	$4 / 1 / 1992$	$4 / 1 / 1992$
$24 "$	$7 / 1 / 1999$	$7 / 1 / 1999$	$4 / 27 / 2000$	$4 / 27 / 2000$	$4 / 1 / 1999$	$4 / 1 / 1999$	$4 / 1 / 1999$

Minimum size limits

Split the index when size limit implemented or changed -May result in indices with short time series
-Multiple size limit changes = multiple short time series indices
Determine if size limit change had an effect on size of landed animals
-Use TIP or observer data pre- and post-regulation -"Informed judgment" (fisher observation) approach

NOAA King mackerel commercial fishing

FISHERIES

SERVICE

regulations. effective dates of

regional fishery closures

NOAA
 FISHERIES
 SERVIGE
 Regulatory Closures

Exclude data from periods of fishery closures to avoid erroneously lowering yearly mean CPUE

NOAA

nora

Kingmackerel commercial fishing regulations: effective dates of regional trip limit changes

limit	$\begin{gathered} \text { W-GOM } \\ \text { start } \end{gathered}$	end	limit	FLWC start	end	limit	$\begin{gathered} \hline \text { SA } \\ \text { start } \end{gathered}$	end
none		6/30/2000	none 12/28/1993		12/28/1993	$\begin{gathered} \text { none } \\ \text { 3,500 lbs } \end{gathered}$	4/1/1995	3/31/1995
3,000 lbs	7/1/2000		50 fish none	12/29/1993	6/30/1994			
				7/1/1994	2/6/1995			
	FLWC-S		125 fish	2/7/1995	2/21/1995	FLWC-N		
1250 lbs	7/1/2000	2/19/2001	125 fish	7/1/1995	1/23/1996	1250 lbs	7/1/2000	11/11/2000
500 lbs	2/20/2001	3/1/2001	50 fish	1/24/1996	2/21/1996	500 lbs	11/12/2000	11/18/2000
1250 lbs	7/1/2001	3/10/2002	1250 lbs	7/1/1996	12/31/1996	1250 lbs	7/1/2001	11/10/2001
500 lbs	3/11/2002	3/22/2002	500 lbs	1/1/1997	1/21/1997	1250 lbs	7/1/2002	11/29/2002
1250 lbs	7/1/2003	3/4/2003	1250 lbs	7/1/1997	11/27/1997	500 lbs	11/30/2002	12/5/2002
500 lbs	3/5/2003	6/30/2003	500 lbs	11/28/1997	1/6/1998	1250 lbs	7/1/2003	10/29/2003
1250 lbs	7/1/2003	3/19/2004	500 lbs	2/20/1998	3/4/1998	500 lbs	10/30/2003	11/13/2003
500 lbs	3/20/2004	4/8/2004	1250 lbs	7/1/1998	1/29/1999	1250 lbs	7/1/2004	11/26/2006
1250 lbs	7/1/2004	2/24/2005	500 lbs	1/30/1999	3/15/1999	500 lbs	11/27/2006	
500 lbs	2/25/2005	6/30/2005	1250 lbs	7/1/1999	1/23/2000			
1250 lbs	7/1/2005	2/24/2006	500 lbs	1/24/2000	3/5/2000			
500 lbs	2/25/2006	3/11/2006						
1250 lbs	7/1/2006							

		KEYS			FECZ	
	limit	start	end	limit	start	end
	- nope		12/28/1993	none		1/12/1993
	50 fish	12/29/1993	1/26/1994	25 fish	2/18/1993	3/26/1993
	muen of inione	4/1/1994	12/19/1994	none	4/1/1993	10/31/1993
	125 fish	2/7/1995	2/21/1995	50 fish	11/1/1993	3/31/1994
	50 fish	4/1/1995	10/31/1995	none	4/1/1994	10/31/1994
	125 fish	11/1/1995	1/23/1996	50 fish	11/1/1994	3/14/1996
	50 fish	1/24/1996	2/21/1996	25 fish	3/15/1996	3/31/1996
	50 fish	4/1/1996	10/31/1996	50 fish	4/1/1996	10/31/1996
	1250 lbs	11/1/1996	12/31/1996	750 lbs	11/1/1996	2/28/1997
	500 lbs	1/1/1997	1/21/1997	500 lbs	3/1/1997	3/31/1997
	1250 lbs	4/1/1997	11/27/1997	50 fish	4/1/1997	3/28/1998
	500 lbs	11/28/1997	1/6/1998	50 fish	4/1/1998	3/12/1999
	500 lbs	2/20/1998	3/4/1998	50 fish	4/1/1999	3/31/2000
	1250 lbs	4/1/1998	1/29/1999	75 fish	4/1/2000	10/31/2000
	500 lbs	1/30/1999	3/15/1999	50 fish	11/1/2000	3/31/2001
	1250 lbs	4/1/1999	1/23/2000	75 fish	4/1/2001	10/31/2001
	500 lbs	1/24/2000	3/5/2000	50 fish	11/1/2001	1/31/2002
	1250 lbs	4/1/2000	2/19/2001	75 fish	2/1/2002	10/31/2002
	500 lbs	2/20/2001	3/1/2001	50 fish	11/1/2002	1/31/2003
	1250 lbs	4/1/2001	3/10/2002	75 fish	2/1/2003	10/31/2003
	500 lbs	3/11/2002	3/22/2002	50 fish	11/1/2003	1/31/2004
	1250 lbs	4/1/2002	3/4/2003	75 fish	2/1/2004	10/31/2004
	500 lbs	3/5/2003	3/31/2003	50 fish	11/1/2004	1/31/2005
	1250 lbs	4/1/2003	3/19/2004	75 fish	2/1/2005	10/31/2005
	500 lbs	3/20/2004	3/31/2004	50 fish	11/1/2005	1/31/2006
	1250 lbs	4/1/2004	2/24/2005	75 fish	2/1/2006	10/31/2006
	500 lbs	2/25/2005	3/31/2005	50 fish	11/1/2006	
	1250 lbs	4/1/2005	2/24/2006			
	500 lbs	2/25/2006	3/11/2006			
	1250 lbs	4/1/2006				

NOAA

Logbook keys 500 lbs

king mackerel fraction 50-75\%

king mackerel fraction 25-50\%

king mackerel fraction $>75 \%$

Trip limits

Determine the extent to which trip limits may have effected fishing effort
—If no effect (few or no trips reach limit), then ignore
-If effect (many trips limit, how many is "many"), can't ignore
If many trips limit
-Exclude data from periods/regions when trip limit was in effect
-Use censored data approach

Elements to include in SEDAR documents

Identify the data set
Temporal and spatial range of the data
Identify the measure of effort
Describe how targeted trips (or sets, trawls, etc.) were identified
Describe size structure of the catch - if known
Are the data landings or total catch, in pounds or individuals

Table of factors/variables considered in the analysis
Methods of addressing fishing regulations

Fishery Dependent Indices:

Standardization of
 Recreational CPUE -
 Data and Issues

Data reported through surveys/logbooks

Basic info:

- Effort Measures (e.g. trips, hours fishing, hooks, lines, anglers)
- Catch (species, numbers or weight)
- Date (year, month or quarter)
- General location (fishing area)

Preferred detail:

- Effort Qualifiers (e.g. fishing method, bait, gear configuration, fishing depth, time of day, TARGET SPECIES)
- Catch Status (kept, release dead or alive, reason for release)
- Date (day)
- Detailed Location (lat/lon, fishing spot)
- Environmental Info (e.g. SST, depth, weather, sea state)

NOAA

 FISHERIES
SERVICE

Available Recreational CPUE Data

Marine Recreational Fishery Statistics Survey:

- Catch and effort statistics collected on intercepted angler-trips by fishing mode (shore, private or rental boats, charter boats and/or headboats) since 1981 for Louisiana through Maine. Texas was partially sampled by the MRFSS in 1981-1985, but has not participated in the survey since 1985.
- Sampling unit is angler-trip, but these are clustered within a vessel-trip)
- Catch (numbers by species, whether observed by sampler or not, disposition)
- General location only (state/sub-region, offshore/near-shore)

HEADBOAT Survey:

- Total landed catch by species is reported by trip in logbooks provided to all headboat crews from TX-NC.
- Only kept fish recorded for most of survey history. Field for released fish added in 2004, but reporting may be incomplete.
- The HBS has had full coverage in the S. Atlantic since 1981 and in the Gulf of Mexico since 1986.
- Detailed Location (lat/lon, 10 min square)

Available Recreational CPUE Data

Large Pelagics Intercept Survey:

- Catch and effort statistics collected on intercepted vessels returning from offshore trips targetting large pelagic species (tunas, billfish, sharks, etc.) since 1982 for Virginia through Massachusetts (in recent years, extended through Maine).
- Vessel captain interviewed (sampling unit is vessel-trip)
- Catch (numbers by species, whether observed by sampler or not, disposition)
- Detailed Location (lat/lon, fishing spot)
- Detailed fishing method (chum/troll/chunk, bait-live/dead/artificial)
- Limited environmental data (SST, water depth)
- Target Species (as reported by vessel captain)

YFTLINE-HOUR vs LINE-HOURS

Headboat- Gulf of Mexico

A few common problems...

Defining target using Stephens and MacCall (2004) approach:

- Uses a multispecies logistic regression approach to predict the likelihood of catching the species of interest based upon its association with other species in the catch. Defines a threshold probability value to accept trip/interview records.
- The Stephens and MacCall method is most appropriately applied to fishing trips that typically land a number of species on a single trip. This is generally not the case in the MRFSS dataset, and this can confound the estimation of the threshold required for the procedure. The approach appears to be more suitable in the case of the HBS.
- One difficulty in the application if this approach is how to handle trips that ONLY catch the species of interest. Since no associated species are caught on such trips, by default these trips might not be included. This is an obvious bias. However, forcing such trips into the analysis data set might also result in a bias if the trip factors would normally have made a catch unlikely. This is particularly a problem with MRFSS data.

Spatial considerations for CPUE indices

John Walter
SEFSC
October 152008

NOAA
 FISHERIES
 SERIVICE

Terms of Reference:

1. Definition of the problem

- CPUE is function only of the fished area
- Space-time interactions make CPUE difficult to interpret

2. Brief examination of possible issues, particularly for GLMs
3. Provision of some basic recommendations

Problem 1: Aggregate CPUE $\not \subset q N$

RAPID COMMUNICATION / COMMUNICATION RAPIDE

Folly and fantasy in the analysis of spatial catch rate data

Carl Walters

Can. J. Fish. Aquat. Sci. 60: 1433-1436 (2003)

CPUE- q \bar{N} : Hyperstability

Mobile fishery, stationary resource- Fishery moves before catch rates decline

0
510
15
20
25
30

Hyperinflation: index remains high as overall A drops

Abundance

CPUE-- q $\bar{N}:$ Hyperdepletion

Catches concentrated in a few cells, depletes these, and moves to less productive areas

0
510
15
20
25
30

Hyperdepletion: index declines faster than overall A

Abundance

Need to predict in unfished areas Downweight clusters of high catches

Perhaps some method that weights sample values according to the space they "represent"

Requires some rather dodgy assumption regarding abundance in unfished areas

Interpolation, geostatistics, spatial GLMs, GAMs, etc

Problem 2: YEAR*AREA INTERACTIONS

1. Ignore the interaction
2. Obtain weighted average of year effect for each area
3. Treat the interaction as a random effect
4. Model separate populations
http://www.fisheriesstockassessment.com/TikiWiki/tiki-
index.php?page=IATTC+October+Stock+Assessment+Methodology+Workshops
Mark Maunder, pers comm, 2008

1. Ignore the interaction

Interaction often an artifact of unbalanced sample design...but that imbalance may not be ignorable

May lead to bias when significant interactions exist

We may not be able to separate changes in abundance from changes in the fishery

We will likely not achieve 'legally defensible science’

2. Weight the year effects for each

 areaDefine some type of spatial weighting factor, this could be a priori or within the model (geostatistical?)
Habitat area, area fished, etc.
Punt et al. (2000) used habitat area to weight gummy shark CPUE (Mustelus antarcticus) off southern Australia.
ICCAT(2008) Skipjack tuna assessment group weighted individual CPUE by number of 1° squares fished by each fishery in each year

Punt, A.E., Pribac, F.,Walker, T.I., Taylor, B.L., Prince, J.D., 2000. Stock assessment of school shark Galeorhinus galeus based on a spatially-explicit population dynamics model. Mar. Freshw. Res. 51, 205220.

ICCAT 2008 Skipjack tuna assessment

3. Treat as random effect

Model year interactions as random effects rather than as fixed effects.
Assumes that year×area interactions are due to random changes in the distribution of the population (Cooke 1997)

Why not fixed effect? - If year*area interactions are included in a fixedeffects GLM, the resulting estimates of annual CPUE are no longer unique, and may not converge with severe imbalance

BUT fixed effects may actually be the reality- we may not be able to separate changes in abundance over time from changes in location over time.

Cooke, J.G. 1997. A procedure for using catch-effort indices in bluefin tuna assessments.

NOAA

FISHERIES

SERVIGE

4. Model as separate populations

How do we deal with movement?

Split indices, split assessment models

General Recommendations

1. Tables of sample sizes/percent positive by area [simple]
2. Maps of catch observations for each year [simple]
3. Plot your data [very time consuming of analyst]
4. Evaluate how representative the index is of population of interest [subjective]

NOAA

1. Table of observations, catch, effort, percent positive

SERVICE

2. Maps of catch/effort

Maps of catch and effort for each year
Examine for:

- contraction/ expansion of effort
- area*time interactions

3. Plot your data [very time consuming of analyst]

Plot data on various spatial scales

Examine CPUE for time*area interactions

Examine CPUE before and after

numbers are total sets
Gult of Mexico

NOAA
FISHERIES

SERVICE

Including year*area random interaction*
\# and

GOM $\quad \stackrel{\rightharpoonup}{\circ}$

NOAA

FISHERIES

SERVICE

4. Evaluate how representative the index is of the population of interest

Perhaps as simple as some guess as to how much of the stock area the index 'covers'

How many shrimp grids, or

$$
10 / 20 ~ 50 \%
$$ other spatial cells?

Other recommendations

1. Tables of sample sizes/percent positive by area [simple]
2. Maps of catch observations for each year [simple]
3. Plot your data [very time consuming of analyst]
4. Evaluate how representative the index is of population of interest [subjective]
5. How to deal with space-time interactions in GLM

Combined inference from multiple noisy CPUE Indices

Paul Conn, NMFS Beaufort

NOAA
 FISHERIES
 SERVICE

NOAA

Motivation

In data poor fisheries (all of them?), there are often a number of CPUE indices to choose from. The situation (esp. in SE U.S.) is often the following:

1) There are multiple CPUE indices, but little-moderate correlation between them
2) Not clear which one is "best"
3) Numerical difficulties / poor fits when trying to fit them all

Motivation

Since each index is ostensibly attempting to measure the same quantity (relative abundance), it is often evident that differences among indices cannot be explained by estimated level of sampling error (i.e., variation attributable to sample size)

There must be some residual, unexplained source of variation

Sources of additional variance

In an age structured population, residual variation in index values can be explained in a number of ways:

- Selectivity differences between indices
- Departure from index assumptions (e.g., departures from IID sampling, model structure)
- Variation in catchability over time and space

Joint inference approach

Problem statement: Assuming selectivities are similar for different indices, can we come up with a single, most probable index conditional on observed index values and estimates of sampling variance?

Intuition: We'll probably need some way of estimating the additional variance not explained by sampling variance (hereafter, "process variance")
Intuition: The degree of agreement/disagreement between indices gives us some idea of how well they are measuring relative abundance.

NOAA

FISHERIES
SERVICE

Joint inference approach

- Assume that each index is subject to process errors in addition to sampling errors
- The most "likely" value an index can take on is related directly to actual changes in abundance and/or biomass
- Easier to describe problem in terms of relative change in an index than absolute value (scale invariant)

NOAA

Model

$$
\begin{array}{lr}
U_{i t} & \text { Index } i \text { in year } t \text { (data) } \\
\Delta_{i t}=U_{i, t+1} / U_{i t} & \text { "Gradient" for index } i \text { in year } t
\end{array}
$$ $\sigma_{i}^{p} \quad$ Process error in index i gradient

$\sigma_{i t}^{S} \quad$ Sampling error for index i gradient in year t
$L_{i t}$
λ_{t} "Latent" gradient for index i in year t

Finite rate of pop change, year t

Joint inference approach

Why relative change in indices?
\rightarrow Can't resolve differences in scaling with raw indices. But...

$$
\begin{aligned}
\mathrm{E}\left(\Delta_{i t}\right) & =\mathrm{E}\left(\frac{U_{i, t+1}}{U_{i t}}\right) \\
& =\mathrm{E}\left(\frac{q_{i, t+1}}{q_{i t}}\right) \frac{N_{i, t+1}}{N_{i t}}=\mathrm{E}\left(\frac{q_{i, t+1}}{q_{i t}}\right) \lambda_{t} \approx \lambda_{t}
\end{aligned}
$$

(assuming no long term trend in catchability or adjusting for assumed trend beforehand)

Joint inference approach

Step 1: Calculate $\quad \Delta_{i t}=U_{i, t+1} / U_{i t}$

Step 2: Calculate sampling error $\sigma_{i t}^{S}$ for each index i, using delta method:

$$
\hat{\operatorname{Var}}\left(U_{i, t+1} / U_{i t}\right)=\frac{\operatorname{Var}\left(U_{i, t+1}\right)}{U_{i t}^{2}}+\frac{U_{i, t+1}^{2}}{U_{i t}^{4}} \operatorname{Var}\left(U_{i t}\right)
$$

NOAA

FISHERIES

SERVICE

Model

Step 3: Apply hierarchical model, e.g.

$$
\begin{aligned}
{\left[\Delta_{i t} \mid \lambda_{t}, \sigma_{i}^{p}, \sigma_{i t}^{s}\right]=} & {\left[\Delta_{i t} \mid L_{i t}, \sigma_{i t}^{s}\right] } \\
& {\left[L_{i t} \mid \sigma_{i}^{p}, \lambda_{t}\right]\left[\lambda_{t}\right]\left[\sigma_{i}^{p}\right] }
\end{aligned}
$$

$$
\left[\Delta_{i t} \mid L_{i t}, \sigma_{i t}^{S}\right]
$$

$\operatorname{Normal}\left(\Delta_{i t} ; L_{i t}, 1 / \tau_{i t}^{S}\right)$
$\left[L_{i t} \mid \sigma_{i}^{p}, \lambda_{t}\right] \quad \operatorname{Normal}\left(L_{i t} ; \lambda_{t}, 1 / \tau_{t}^{p}\right)$

$$
\begin{array}{ll}
{\left[\tau_{i}^{p}\right]:} & \operatorname{Gamma}\left(\tau_{i}^{p} ; \alpha, \beta\right) \\
{\left[\lambda_{t}\right]:} & \operatorname{Uniform}(a, b)
\end{array}
$$

NOAA

Model

So, inference focuses on λ_{t}
but a derived index can be calculated as

$$
\hat{\boldsymbol{\mu}}=\left[1, \lambda_{1}, \lambda_{1} \lambda_{2}, \ldots, \prod_{t} \lambda_{t}\right]
$$

with an arbitrary value of 1 in the first year to scale the index

NOAA

Spanish mackerel example

Nine indices were constructed for Spanish mackerel, with the following correlation structure

	FL trip ticket, gillnet series 1	FL trip ticket, gillnet series 2	FL trip ticket, castnet	FL trip ticket, hand lines	MRFSS	Commercial logbook, GA NY, gillnet	Commercial logbook, GANY, hand lines	SEAMAP YOY	SEAMAP YOY (1 yr. lag)	$\begin{aligned} & \text { SEAMAP 1-yr- } \\ & \text { olds } \end{aligned}$
FL trip ticket, gillnet series 1	1	NA	NA	-0.37	-0.16	NA	NA	-0.79	-0.73	-0.12
FL trip ticket, gillnet series 2	NA	1	-0.63	-0.19	-0.28	-0.64	-0.29	0.22	0.03	0.27
FL trip ticket, castnet	NA	-0.63	1	0.44	0.19	0.28	-0.11	-0.67	-0.25	-0.51
FL trip ticket, hand lines	-0.37	-0.19	0.44	1	0.08	0.27	-0.08	0.22	-0.1	-0.18
MRFSS	-0.16	-0.28	0.19	0.08	1	0.14	0.21	-0.22	-0.03	-0.06
Commercial logbook, GA-NY, gillnet	NA	-0.64	0.28	0.27	0.14	1	0.15	0.19	0.68	-0.55
\qquad	NA	-0.29	-0.11	-0.08	0.21	0.15	1	0.06	0.38	-0.11
SEAMAP YOY	-0.79	0.22	-0.67	0.22	-0.22	0.19	0.06	1	0.44	-0.11
$\begin{gathered} \text { SEAMAP YOY (1 } \\ \text { yr. lag) } \end{gathered}$	-0.73	0.03	-0.25	-0.1	-0.03	0.68	0.38	0.44	1	-0.26
SEAMAP 1-yr-olds	-0.12	0.27	-0.51	-0.18	-0.06	-0.55	-0.11	-0.11	-0.26	1

Spanish mackerel example

- No a priori reason why one index best
- Commercial fishermen indicated there were shifts in wintering distributions that would affect different fisheries in a different manner
- Basing inference on a few indices would ignore information about catch-effort trends in other fisheries/regions

Decision: Apply joint inference procedure before running stock assessment analyses

NOAA

Spanish mackerel example

Concentrated on 7 fishery dependent indices (6 commercial, 1 general recreational) where selectivity was "similar" over the most highly abundant/harvested age classes. Delta-GLMs used to construct each index.
(Two SEAMAP indices not considered because they reflected indices of young-of-year and 1-year-olds only)

Spanish mackerel example

A hybrid Gibbs/Metropolis-Hastings sampler (programmed in R) was used to sample from posterior distribution of the parameters given the data (110,000 MCMC iterations with a 10,000 iteration burn-in
Inference focused on changes in relative abundance
$\left(\lambda_{t}\right)$, but a posterior predictive distribution for a
"standardized" index calculated as

$$
\hat{\boldsymbol{\mu}}=\left[1, \lambda_{1}, \lambda_{1} \lambda_{2}, \ldots, \prod_{t} \lambda_{t}\right]
$$

NOAA

FISHERIES
SERVICE

Spanish mackerel example

Standard MCMC diagnostics indicated convergence to the posterior

NOAA

FISHERIES

Spanish mackerel example

Posterior means
 (w/ 90\% Cls)

NOAA

SERVICE

Spanish mackerel example

Also, get estimates of $L_{\text {it }}$ (shrinkage estimates)

NOAA

FISHERIES

SERVICE

Spanish mackerel example

Estimates of process error

NOAA

FISHERIES
SERVICE

Summary

- Focusing on gradients allows combination of indices of different length (scale invariant)
- Calibration concerns possibly less of an issue
- Doesn't require subjectivity - but if some is desired, it could take the form of informative prior distributions on process errors (e.g., if certain indices have better spatial coverage, etc.)

Summary

But..... There are some caveats

- Somewhat sloppy of a method in that the "true" lambda may differ for each index if selectivity differs among indices - it's not defined in an entirely consistent way
- May not be appropriate for metapopulations
- Precision of combined index increases over course of study because of compounded uncertainty in lambda
-Assume fixed variance
-Fit to lambda within assessment model
—Fit internally to assessment model itself (also could account for selectivity differences...but added computing time)

Future research

Simulation study needed to examine

- Overall performance when assumptions met
- Effects of different selectivities
- Different patterns of process variance
- Different functional forms for model components (model selection/averaging?)

Current recommendation: Only use for indices with "similar" selectivities

BEYOND

STEPHENS \& MACCALL

T0

BETTER INTUITION

AND

DIAGNOSTICS

California Recreational Fishery

- Partyboats ~ 10 fishers
- Different targets: different habitat
- Targets: 120 spp.
- Tuna
- Salmon
- Groundfish
- Visit 1-4 sites/day

Target: Bocaccio

NMFS Bocaccio Assessment (MacCall, 2003)

Confounding influences

Can we explain this?

CPUE estimation in a mixed fishery

- Calculate effort for bocaccio
- Remove the influence of tuna
- Eliminate influence of fishing trends
- Understand stock dynamics

Subsetting the data

- Explicit:
- Implicit:
habitat

- Presence/Absence
- Logistic regression:

Maximum likelihood

MRFSS Data

- Marine Recreational

Fishery Statistics Survey

- 1980-1989, 1993-1999
- Dockside survey
- NO location information

CDFG Data

- California Department of Fish and Game
- 1986-1998
- Onboard sampling with locations
- "Trip Data" Multi-site trips

Compare with MRFSS data

- "Site Data" Individual site visits

Compare Species/Location Criteria

Evaluating the Regression

- Do the coefficients make sense biologically?
- Which trips do we accept?

Choose a probability threshold

- How many of our predictions are correct?
Non-coocurring
Black rockfish
Gopher rockfish
Brown rockfish
Quillback rockish
Kelp greenling
Blue rockfish
China rockfish
Rosy rockfish
Canary rockfish
Olive rockfish
Vermilion rockfish
Sablefish
Grenspotted rockfish
Lingcod
Squarespot rockfish
Flag rockfish
Starry rockfish
Grenstriped rockfish

Regression Coefficients (β)

Critical Value Analysis

Probablity threshold for Bocaccio effort

Data Selected by Species Regression

CPUE Indices CDFG Sites

CPUE Indices CDFG Trips

CPUE Indices MRFSS

1998: a good year to fish Tuna

Target Switching

Change in visits to bocaccio habitat
1987-1998

Change in the amount of time spent fishing bocaccio habitat

1987-1998

CDFG Trips

Species Regression moderates effects of target switching

Correct Predictions

- CDFG Site-visits
- Species Regression
81.0 \%
- Location
70.3 \%
- CDFG Fishing Trip (multi-site)
79.4 \%
- MRFSS Species Regression 84.5 \%

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Too few regressors?
- Data too sparse?
- Change in habitat use?
- Population changes among species?

Pseudo-Fish

- Habitat groups
- Onshore
- Northern
* Ubiquitous
- Pelagic
- Southern
- Rocky Reef
- 2-5 species each group
- Randomly scattered from habitat center
- Fish falling outside the ocean swim away
- Species list at location is catch

Regression Diagnostics

- $X^{2}<$ degrees of freedom
- Range of regression coefficients
- Stability of regression coefficients
- Probabilities
- Predictions:

\% Correct
\% False Positives
\% False Negatives

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Habitat Overlap

Target: Low-abundance Rocky Reef species

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Too few regressors?
- Data too sparse?
- Change in habitat use?
- Population changes among species?

Pelagic and Ubiquitous Targets

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Limited Data

	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{1 \%}$	$\mathbf{0 . 1 \%}$
Coefficient Range	16.57	17.57	779.45	357.92
Maximum Probability	0.92	0.96	1	1

Target: Low-abundance Rocky Reef species $\sigma^{2}=5$

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Regressors

	All 22	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4} \mathbf{~ U ~}$
Coefficient Range	3.14	5.10	-	0.15
Maximum Probablility	0.90	0.61	0.15	0.17

Target: Low-abundance Rocky Reef species $\sigma^{2}=5$

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Change in Habitat Use

	\% Correct
Early	93
Late	93
Full	87
Early model Late data	84

Target: Low-abundance migratory species $\sigma^{2}=3$

When does this method fail?

- When habitats overlap too much?
- For certain types of target species?
- Data too sparse?
- Too few regressors?
- Change in habitat use?
- Population changes among species?

Population Fluctuations

- Three Reef species increased 20\% each year
- One N and Two S species declined 20\% each year

Target: Low-abundance Rocky-Reef species $\sigma^{2}=5$

Method Failure

Violation of the habitat - species connection

- Overlapping habitats
- Ubiquitous targets
- Ubiquitous regressors
- Changing habitat use

Goodness of Fit Measures

- Magnitude of regression coefficients
- Stability of regression coefficients
- Over- vs. under-prediction
- X^{2} smaller than degrees freedom
- Need to evaluate subsets of the data

Statistical Modelling GLM in R

What is Statistical Analysis ?

- Understand Nature of data, need to answer
- Kind of response variable
* Type and nature of explanatory variables
- Data is what is "known"
- Model fit to the data, NOT data fit to model!!
- Best model
- Provides the least unexplained variation subject to constraints that all parameters are statistically significant
- Principle of Parsimony: Minimal model but adequate

Maximum Likelihood

- Best model, conventions
- Unbiased
- Variance minimizing estimators
- Given the data \& given our choice of model then ML
- Provides values of parameters of that model that makes the DATA most likely

Principle of Parsimony

- William of Occam:
- "Given a set of equally good explanations for a given phenomenon, the correct explanation is the simplest one."
- Models should have as few parameters as possible
- Linear models should be preferred to non-linear models
- Experiments relying in few assumptions are preferred
- Models should be pared down until they are minimal

Types of Statistical Model

Null model	One parameter, overall mean, explanatory power none
Minimal adequate model	Simplified model $1<p<p^{\prime}$ parameters explanatory power r^{2}
Maximal model	 covariates, p' parameters
Saturated model	One parameter for each observation Explanatory power none

Data for statistical models

- Types of Data

- From experimental planned designs
- All combinations equally represented
- Controlled explanatory variables
- Orthogonal in nature
- Order of explanatory variable in model not important
- From observation studies
- No control over number of individuals/observations
- Missing combination treatments
- Many likely correlated explanatory variables
- Non-orthogonal data
- Order of explanatory variable in model important

Model simplification

1	Fit maximal model	Fit all factors, interactions, covariates
2	Begin model simplification	Remove least significant terms first, starting with highest-order interactions
3	If deletion causes an insignificant increase in deviance	Leave that term out, inspect the parameter values again Remove the least significant term remaining
4	If deletion causes a significant increase in deviance	Put term back in the model These are the statistically significant terms
5	Keep removing terms from the model	Repeat steps 3 \& 4 until only significant terms remain in the model. This is the minimal adequate model.

Purpose of Predictive Modeling

To predict a response variable using a series of explanatory variables.

Traditional methods focus on the parameters, modeling requires the analyst to consider the validation of the parameters.

Purpose of Predictive Modeling

To produce a sensible model that explains recent historical experience and is likely to be predictive of future experience.

Traditional methods tend to create unnecessarily complex structures that tend to overfit the data.

Generalized Linear Models

GLMs generalize the traditional regression models by introducing nonlinearity through the link function and loosening the normality assumption

GLMs

More formally:

Response			
Variable	Systematic		
Component		$+\quad$	Random
:---			
Component			

$$
\mathrm{Y}=\hat{\mathrm{Y}}+\varepsilon
$$

Where:

And:

Prior Weights

GLMs

The general solution for the GLM parameters:

$$
\hat{\beta}^{(r)}=\left[\mathrm{X}^{\mathrm{T}} \mathrm{~W}^{(r-1)} \mathrm{X}\right]^{-1} \mathrm{X}^{\mathrm{T}} \mathrm{~W}^{(\mathrm{r}-1)}\left\{\hat{\eta}^{(r-1)}+\mathrm{g}^{\prime}\left(\hat{\mu}^{(r-1)}\right) \times\left(\mathrm{y}-\hat{\mu}^{(r-1)}\right)\right\}
$$

Where:
and:

Error Distribution

GLM Building Blocks: Link Functions

$\mathrm{y}=\mathbf{h}($ Linear Combination of Factors $)+$ Error
Link function $\left(g=h^{-1}\right)$ chosen base on how the factors are related to produce the "best" signal/response:
-Log: variables related multiplicatively (e.g., risk modelling)

- Identity: variables related additively (e.g., risk modelling)
-Logit: retention or risk modelling
-Reciprocal: canonical link for gamma distribution (e.g., severity modelling)
-Mixed: additive/multiplicative rating algorithms

GLM Building Blocks: Link Functions

Link function relates the independent predictors to the response in a non-linear form :

- Pure Multiplicative - Log

$$
\hat{Y}=\eta=\exp (X \beta)
$$

- Pure Additive - Identity

$$
\hat{Y}=\eta=X \beta
$$

- Logit

$$
\hat{Y}=\eta=\frac{1}{1+e^{-(\mathrm{X} \beta)}}
$$

- Reciprocal

$$
\hat{Y}=\eta=\frac{1}{X \beta}
$$

GLM Building Blocks: Error distribution

$$
\mathrm{y}=\mathrm{h}(\text { Linear Combination of Factors })+\text { Error }
$$

Reflects the variability of the underlying process

- Gamma consistent with skewed response modelling, also Inverse Gaussian

- Poisson consistent with frequency modelling

- Tweedie distribution consistent with zero and positive response modeling

- Normal useful for a variety of applications

GLM Building Blocks: Error distribution Additional Variance Functions

Error structure is also used to incorporate assumptions about the uncertainty and the predicted value

Observed Response	Error Structure	Variance Function $\mathrm{V}(\mu)$	Scale Parameter ϕ
	Normal	μ^{0}	σ
Frequency counts	Poisson	μ	1
Skewed response	Gamma	μ^{2}	α
Increase zero proport	Tweedie	μ^{\top}	μ^{\top}
Binary response	Binomial	$\mu(1-\mu)$	K
Counts	Over-dispersed Poisson	μ^{3}	α
Highly skewed response	Inverse Gaussian		

GLM Building Blocks: Model Structure

$\mathrm{y}=\mathrm{h}($ Linear Combination of Factors $)+$ Error

- Include variables that are predictive, exclude those that are not
- Gender may not have major impact on catch rates
- Simplify some explanatory factors, if full inclusion not necessary
- Some levels within a particular predictor may be grouped together (e.g., number of holding tanks)
- A curve may replicate the signal (sex ratio)
- Scoring levels to combine rating factors into a single concept thereby untangling impacts of various factors (e.g. vessel electronics)
- Complicate model if the relationship between levels of one variable depends on another characteristic
- The difference between males and females depends on age

GLM Building Blocks: Model Structure

Complicating the Model: Interactions

- Interactions are required when the combined effect of multiple levels of two different independent explanatory factors is different than the additive effect of the simple parameters.
- Interaction topics
- Interactions versus correlations
- Identifying interactions
- Full and partial interactions
- Simplifying interactions

GLM Building Blocks: Model Structure

> interaction.plot(....)

GLM Building Blocks: Model Structure

Distribution observations by:

year
> mosaic.plot(....)

Distribution observations by:

Distribution observations by:

Distribution observations by:

Measurements of Fit

Deviance

- A measure of the discrepancy between the observed values and the predicted by the model. Is estimated as the double difference between the Maximum Likelihood possible (i.e. one parameter for each observation) and the Maximum Likelihood of the model evaluated.

$$
\begin{aligned}
& \text { if }: \hat{\theta}=\theta(\mu) \quad \text { and } \quad \widetilde{\theta}=\theta(y) ; n=p \\
& a_{i}(\phi)=\phi / w_{i} \quad \text { dispersion parameter } \\
& D(y, \mu)=2 \log \frac{L(y ; y)}{L(\mu ; y)} \\
& D(y ; \hat{\mu}) / \phi=\sum 2 w_{i}\left\{y_{i}\left(\widetilde{\theta}_{i}-\hat{\theta}_{i}\right)-b\left(\widetilde{\theta}_{i}-\hat{\theta}_{i}\right\} / \phi\right.
\end{aligned}
$$

Measurements of Fit

$$
\begin{array}{ll}
\text { Normal } & \sum(y-\hat{\mu})^{2} \\
\text { Poisson } & 2 \sum\{y \log (y / \hat{\mu})-(y-\hat{\mu})\} \\
\text { Binomial } & 2 \sum\{y \log (y / \hat{\mu})+(m-y) \log ((m-y) /(m-\hat{\mu}))\} \\
\text { Gamma } & 2 \sum\{-\log (y / \hat{\mu})+(y-\hat{\mu}) / \hat{\mu}\} \\
\text { InvGaussian } & \sum(y-\hat{\mu})^{2} /\left(\hat{\mu}^{2} y\right)
\end{array}
$$

Pearson X2 statistic

 another measure of discrepancy$$
X^{2}=\sum(y-\hat{\mu})^{2} / V(\hat{\mu})
$$

Deviance Analysis

- Extension of the Analysis of Variance to the GLM that allows to evaluate the statistical effects of factors and its interactions.
- However, in GLMs the parameters in the model are not orthogonal, because the transformation through the link function is not necessarily linear.
- The difference in deviance is used as a measure of discrepancy between successive models.

.... Deviance Analysis

- In theory, if we consider $\mathrm{Mo} \subset \mathrm{M}$ as a sub model with $q<p$ parameters of model M .
- Knowing the dispersion parameter σ^{2}, the statistic given by the difference of deviance between both models scaled by σ^{2}, follows an approximate Chi-square distribution with $p-q$ degrees of freedom.

$$
\frac{\left(D_{M o}-D_{M}\right)}{\sigma^{2}} \approx \chi_{p-q}^{2}
$$

.... Deviance Analysis Table

GLM Diagnostics

- Model diagnostics introduce verification in the statistical analysis process to assure that the selected model is the appropriate one given the data analyzed.
- Model checking primarily for
- Systematic departure of the model assumptions,
- Observations that are discrepant or inconsistent from the rest of the data (outlier analysis).
- The model checking techniques fall into two groups:
- Informal: those that relay on subjective human decision to determine patterns or better, departure from expected patterns.
" Formal techniques that imply a wider model (where the "selected current model" is a subset) with higher number of parameters. In this case, the current model passes the check if it can demonstrate that the extra parameter(s) in the wider model did not improve the fitting of the data. McCullagh and Nelder (1989)

Model Diagnostics

, IMPORTANT
After evaluating the model fit and significance of the explanatory variables, it is imperative to complete the analysis with a model diagnostics to confirm the model assumptions and to detect outliers.

Model checking elements

- Model checking originally developed for classical linear models, and then McCullagh and Nelder (1989) extended it to Generalized Linear Models (GLMs).
- Analysis of residuals are the primarily element for model checking, however other components in GLM checking include the fitted values, the linear predictors, the residual variance, the dispersion parameter and the elements of the projection ('hat') matrix.

Residuals

Main tool for determining the fit of the model. Types of residuals

- Response residuals: difference between the observed values and the estimated values by the model.
- Working residuals: difference between the response variable and the linear predictor estimated.
- Deviance residuals: measure the contribution of each observation to the total model deviance.
- Pearson residuals: response residuals weighted by the estimated variance of the model.

$$
r_{i}=\left(y_{i}-\hat{\mu}_{i}\right)
$$

$$
r_{w_{i}}=\left(y_{i}-\hat{\mu}_{i}\right) \frac{\partial \hat{\eta}_{i}}{\partial \hat{\mu}_{i}}
$$

$$
r_{D_{i}}=\operatorname{sign}\left(y_{i}-\hat{\mu}_{i}\right) \sqrt{d_{i}}
$$

$$
r_{P_{i}}=\frac{y_{i}-\hat{\mu}_{i}}{\sqrt{V\left(\hat{\mu}_{i}\right)}}
$$

... residuals

Re-scaling residuals.
Standardized / Studentized residuals: residuals scaled by the variance or dispersion parameter and the corresponding "hat" element

- Studentized Deviance residuals
- Studentized Pearson residuals

$$
\begin{aligned}
& r_{D s_{i}}=\frac{r_{D i}}{\sqrt{\hat{\Phi}\left(1-h_{i}\right)}} \\
& r_{P s i}=\frac{y_{i}-\hat{\mu}_{i}}{\sqrt{\hat{\Phi V(\hat{\mu})\left(1-h_{i}\right)}}}
\end{aligned}
$$

Jacknife or deletion residuals
represent the difference between the observed response for case i and the response predicted from the model excluding case (i) observation

$$
r_{J(i)}=\frac{y_{i}-\hat{y}_{(i)}}{\hat{\sigma}_{(i)} \sqrt{\left(1-h_{i}\right)}}
$$

Model checking for systematic departure of the model assumptions

1. Random component [Error distribution]

Plot of standardized deviance residuals against the predicted values. For distributions other that the Normal, the predicted values should be transform to a constant scale
The expected pattern is a uniform and constant range distribution of the residuals around the mean zero value

Departures
Curvature of mean trend indicates:
incorrect link function
wrong scale of one or more covariates omission of higher order terms in the model
Non-constant range of residuals incorrect variance function

Plot 1 Random component [Error distribution]

Error Distribution diagnostic plot

Model checking for systematic departure of the model assumptions

2. Diagnostic for the variance function

Plot of the absolute value of residuals against the fitted values, transformed to a constant information scale.
The expected pattern is a plot without tendency in the residuals. A positive trend indicate that the observed variance increases much more rapidly than the model assumed variance.

Departures
Positive trend indicates that the variance function increases too slowly compare to the mean values of the data
Negative trend indicates variance function increases much faster than the mean values of the data

2. plot for the variance function

Variance function diagnostic plot

Model checking for systematic departure of

 the model assumptions3. Diagnostic for the link function

Plot of the adjusted dependent variable against the linear predictor.
The expected pattern is a linear trend.
Departures
curvatures in the plot trend indicate a low or high power in the exponential link assumption
non-informative for binary data

In general when the number of observations is high, trends can be inferred by using 'smoothers' such as the Loess function.

3. Plot for the link function

Link function diagnostic plot

Model checking for systematic departure of the model assumptions
4. Diagnostic for the scale of explanatory covariates / factors
Plot of the standardized deviance residuals against the explanatory variable.
The expected pattern is a constant range distribution with mean of zero.
Departures
Missing interactions or higher order terms in some factor(s)
incorrect scale for explanatory variable
incorrect link function
Alternative plot: Partial residual plot for each factor/covariate. null pattern is a linear trend (continuous covariates only).

4. Plot for the scale explanatory variables

year

targ
MigArea2

Error Distribution diagnostic plot

Variance function diagnostic plo1

Link function diagnostic plot

Linear predictor $\hat{\eta}$

Variance function diagnostic plol

Theoretical Quantiles

Link function diagnostic plot

Transformations to constant information scale of error distribution

$\hat{\mu} \quad$ Normal error
$2 \sqrt{\hat{\mu}}$ Poisson error
$2 / \sin (\sqrt{\hat{\mu}})$ Binomial error
$2 \log \hat{\mu} \quad$ Gamma error
$-2 / \sqrt{\hat{\mu}} \quad$ Inverse gaussian

Model checking for Observations that are discrepant or inconsistent from the rest of the data

Residual analysis focus on the influence and/or "leverage" of a given observation and the effect on the parameters estimated by the model.

- Leverage:
- Diagonal elements of the 'hat' matrix
> They represent the influence of a given point in the fit, large value of h_{i} indicates that the fit may be sensitive to the response observation i.
- A plot of leverage values indicating those values of $h_{i}>2 p / n$ is an informative tool.
- Influence:
- Influence is normally measured as weighted combination of the changes of estimates with and without a given extreme point.
- Cooke (1977) introduce an statistic, 'Cook distances' that approximates the residual scaled difference between the model fit with observation response for case i and the model fit without the observation i.

hat elements

Cook's distance

Model checking Results

Residual analysis

leverage cutoff small $<8 /(n-2 p)<$ large
influence cutoff small $<2 p /(n-2 p)<$ large
where $n=$ number observations, $p=$ number parameters

> halfnorm plots (....) library faraway

> plot(glm.object)

> glm.diag.plots(glm.object) library boot

Final model Testing

- IMPORTANT

After evaluating the model fit and significance of the explanatory variables, it is imperative to complete the analysis with a model diagnostics to confirm the model assumptions and to detect outliers.

Testing final model predictiveness: Sampling

1. Training and Testing

Testing final model predictiveness: Bootstrapping

2. Bootstrapping

Not OK

Conclusions

- Selecting a model class and fit the data
- Just the beginning of Statistical Analysis
- Model diagnostics
- An important component to validate statistical model assumptions
- Two main topics
- Systematic departures of the model assumptions
- Isolated departures of observations
- Model testing
- Cross-validation
- Model robustness
- Final Model ...

A Review of Index Weighting Schemes for Stock Assessments

Clay E. Porch

October 20, 2008

NOAA
 FISHERIES
 SERVICE

Why it matters: A simple example

MODEL:

$$
\begin{aligned}
& U_{y}=q\left(N_{0}+G^{\star} y\right)+\varepsilon_{y} \\
& P\left(\varepsilon_{y}\right) \sim \operatorname{Normal}(0, \sigma) \\
& P\left(U_{y}\right) \sim \operatorname{Normal}\left(q\left(N_{0}+G^{\star} y\right), \sigma\right) \\
& L\left(U_{1}, U_{2}, \ldots, U_{n}\right)=P\left(U_{1}\right) P\left(U_{2}\right) \ldots P\left(U_{n}\right) \text { if i.i.d. }
\end{aligned}
$$

ESTIMATION:

MAXG, $,{ }^{,}, \sigma_{\mathrm{a}} \mathrm{L}\left(\mathrm{U}_{\mathrm{a} 1}, \mathrm{U}_{\mathrm{a} 2}, \ldots, \mathrm{U}_{\mathrm{an}}\right)$
If there exists an efficient unbiased estimator, the maximum likelihood method will produce it

Why it matters: A simple example

$$
\begin{aligned}
-\operatorname{lnL}\left(U_{1 y}, U_{2 y}\right)= & \Sigma 0.5^{*}\left[\mathrm{U}_{1 y}-\mathrm{q}_{1}\left(\mathrm{~N}_{0}+G y\right)\right]^{2} / \sigma_{1}{ }^{2}+\ln \left(\sigma_{1}\right)+ \\
& \Sigma 0.5^{*}\left[\mathrm{U}_{2 y}-\mathrm{q}_{2}\left(\mathrm{~N}_{0}+G y\right)\right]^{2} / \sigma_{2}{ }^{2}+\ln \left(\sigma_{2}\right)
\end{aligned}
$$

Parameters $\mathrm{q}_{1}, \mathrm{q}_{2}, \sigma_{1}, \sigma_{2}, \mathbf{G}$

1) Set σ equal to arbitrary constant
2) Minimize -InL function over both q and σ
3) Minimize concentrated likelihood function for σ over q SOLVER DEMO

WEIGHTING SCHEMES ARE TIED TO THE ASSUMED ERROR STRUCTURE

EQUAL (fixed or estimated σ)

U_{j} 's must be the same average magnitude
-Normal (additive)
implies constant variance

$$
\sum_{j, y} 0.5\left(\frac{\hat{U}_{j, y}-\hat{U}_{j, y}}{\sigma}\right)^{2}+\ln (\sigma)
$$

-Lognormal (multiplicative) implies constant log-scale $\sum_{j, y} 0.5\left(\frac{\ln U_{j, y}-\ln \hat{U}_{j, y}}{\sigma\{\ln U\}}\right)^{2}+\ln (\sigma\{\ln U\})$ variance (constant CV)

[^0]
WEIGHTING SCHEMES ARE TIED TO THE ASSUMED ERROR STRUCTURE

MLE (iterative reweighting, concentrated likelihood, direct search)

- Normal (additive)

$$
\sum_{j, y} 0.5\left(\frac{U_{j, y}-\hat{U}_{j, y}}{\hat{\sigma}_{j}}\right)^{2}+\ln \left(\hat{\sigma}_{j}\right)
$$

= constant variance

$$
\hat{\sigma}_{j}=\frac{1}{n} \sum_{y}\left(U_{j, y}-\hat{U}_{j, y}\right)^{2}
$$

-Lognormal (multiplicative)
= constant log-scale variance (constant CV)

$$
\hat{\sigma}_{j}=\frac{1}{n} \sum_{y}\left(\ln U_{j, y}-\ln \hat{U}_{j, y}\right)^{2}
$$

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

-EQUAL (fixed or estimated σ)
-MLE (iterative reweighting, direct search, concentrated likelihood) -INPUT VARIANCE (σ derived externally)

$$
0.5 \sum_{j, y} \frac{\left(U_{j, y}-\hat{U}_{j, y}\right)^{2}}{\sigma_{j, y}^{2}}+\ln \left(\sigma_{j, y}^{2}\right)
$$

Note: σ may be derived from sample size as from GLM, expert opinion, area covered, etc....

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

-EQUAL (fixed or estimated σ)
-MLE (iterative reweighting, direct search, concentrated likelihood)
-INPUT VARIANCE (σ derived externally)
-ADDITIONAL VARIANCE (σ derived externally, ω estimated)

$$
0.5 \sum_{j, y} \frac{\left(U_{j, y}-\hat{U}_{j, y}\right)^{2}}{\sigma_{j, y}^{2}+\hat{\omega}_{j}^{2}}+\ln \left(\sigma_{j, y}^{2}+\hat{\omega}_{j}^{2}\right)
$$

Note: if observation error is independent of process error, then the variance should be additive

SERVICE

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

-EQUAL (fixed or estimated σ)
-MLE (iterative reweighting, direct search, concentrated likelihood)
-INPUT VARIANCE (σ derived externally)
-ADDITIONAL VARIANCE (σ derived externally, ω estimated)
\cdot •MULTIPLICATIVE VARIANCE (σ derived externally, ω estimated)

$$
0.5 \sum_{j, y} \frac{\left(U_{j, y}-\hat{U}_{j, y}\right)^{2}}{\hat{\omega}_{j}^{2} \sigma_{j, y}^{2}}+\ln \left(\hat{\omega}_{j}^{2} \sigma_{j, y}^{2}\right)
$$

Note: useful if one trusts σ as a measure of relative precision from one year to the next (but not necessarily across indices)

BRIEF REVIEW OF SOME ALTERNATIVE WEIGHTING SCHEMES

-EQUAL (fixed or estimated σ)
-MLE (iterative reweighting, direct search, concentrated likelihood)
-INPUT VARIANCE (σ derived externally)
-ADDITIONAL VARIANCE (σ derived externally, ω estimated)
-MULTIPLICATIVE VARIANCE (σ derived externally, ω estimated)

Instead of estimating ω (or σ) one can solve for them such that average variance is the same for each series (equal-weighting of sorts, but maintaining inter-annual variation)...
or come up with your own mischievous combinations!

SERVICE

 standardised CPUE abundance indices (Maunder and Starr, 2003)- Equal weighting vs. Input variance weighting
- Simple biomass dynamic model with known survival, constant recruitment, single estimated parameter (virgin biomass)
- Simulated raw CPUE and ran it through standardization procedure (obtain year-specific CV's)
- Fit simple biomass model to indices using equal weighting and input variance weighting

Results indicate additional bias and reduced precision will be introduced into the population parameter estimates if the CV's differ between abundance indices and this difference is not incorporated into the fitting procedure.

SERVICE

Comparisons of index weighting schemes for tuned virtual population analyses (Legault and Porch, 2001)

- Equal weighting vs. maximum likelihood weighting
- Simulated bluefin tuna data 1970-1997

8 indices with 25% or 50% CV different age ranges (age-specific vs. combined ages) different estimation schemes for terminal F parameters

Results indicate no clear pattern in the bias or uncertainty of estimates between the two weighting schemes

- Fixed variances based on external considerations may not account for all sources of uncertainty
- Estimating variances (or components of variances) -can have too many parameters (asymptotic properties) -estimates are conditioned on model structure -variance estimation complicated when multiple types of data are used (must specify ratios: e.g., $\sigma_{\text {catch }} / \sigma_{\text {index }}$)
- Insufficient testing to make general conclusions

SERVICE

Qualitative evaluation of CPUE series used for west Atlantic bluefin stock assessment (Suzuki, 2001)

- Notes that weighting methods generally discussed in context of precision among abundance indices, but not their relative accuracy
- Relative accuracy is more important
- Qualitative ranking of indices (example Western Bluefin tuna)

Fishery	Canada	USRR	JLLGOM	JLLNW	USLLGOM	Larval	
Area	1	2	5	1	1	1	
Time	2	2	5	3	3	3	
Change in operational	2	2	5	4	1	5	
aspects							
Total	5	6	15	11	8	12	13

POSSIBLE CRITERIA FOR SELECTING A METHOD (e.g., McAllister et al 2001)

A priori criteria

Flow chart?

1. Are year to year variations in uncertainty likely to be substantial and measurable for a given index?
-reliable measures of relative uncertainty? (e.g., GLM)
-reliable measures of absolute uncertainty? (e.g., designed-based)
2. Does the level of uncertainty likely vary substantially among indices?
-is available expertise sufficient and able to reach consensus ranking -is candidate estimation method well-understood (widely-practiced, simulation tested, easily applied in current assessment framework)

POSSIBLE CRITERIA FOR SELECTING A METHOD (e.g., McAllister et al 2001)

A posteriori criteria

1. Does the method accord unrealistically high or low variance to some data series?
-What level should be deemed unrealistic?
2. Do the estimates of variance strongly disagree with expert judgment on the relative reliability of each series as an index of abundance
3. Are estimates statistically defensible
-goodness of fit (e.g., Chi-square deviance statistic)
-model selection criteria (e.g., AIC)

Minimum Requirements for the I ndices Working Group Report Section

Julie A. Neer
SEDAR Coordinator

I ndices Procedural Workshop
Miami, FL
October 2008

I NDI CES GROUP TERM OF REFERENCE

Provide measures of population abundance that are appropriate for stock assessment.
Consider all available and relevant fishery dependent and independent data sources.
Document all programs evaluated, addressing program objectives, methods, coverage, sampling intensity, and other relevant characteristics.
Provide maps of susvey soverage,
Develop CPUE and index values by appropriate strata (e.g., age, size, area, and fishery); provide measures of precision and accuracy.
Evaluate the degree to which available indices adequately represent fishery and population conditions.
Recommend which data sources are considered adequate and reliable for use in assessment modeling.

REPORT OUTLI NE

-Measures of Population Abundance
1.Overview (Group membership, leader, issues)
2.Review of Working Papers
3. Fishery I ndependent Surveys

* Methods, Gears, and Coverage (Map Survey Area)
* Sampling I ntensity - Time Series
* Size/ Age data
* Catch Rates - Number and Biomass
* Uncertainty and Measures of Precision
* Comments on Adequacy for assessment
4.Fishery-Dependent Measures
* Methods of Estimation
* Sampling I ntensity
- Size/ Age data
* Catch Rates - Number and Biomass
* Uncertainty and Measures of Precision
* Comments on Adequacy for Assessment
5.Consensus Recommendations and Survey Evaluations
6.Research Recommendations
7.I temized list of tasks for completion following workshop
(I nclude expected completion dates and responsible parties)

8. Literature Cited
9. Tables
10. Figures

TABLES

I NDI CES SUMMARY

I NDEX VALUES

I ndices Summary Tables

Table 5.1. A summary of catch-effort time series available for the SEDAR 15 data workshop.

Fishery Type	Data Source	Area	Years	Units	Standardization Method	Size Range	Issues	Use?
Recreational	Headboat	Atlantic	1976-2006	Number per angler-hr	Stephens and MacCall; deltalognormal GLM	Same as fishery	Fishery dependent	Y
Commercial	Handline	Atlantic	1993-2006	Pounds per hook-hr	Stephens and MacCall; deltalognormal GLM	Same as fishery	Fishery dependent	Y
Recreational	MRFSS	Atlantic	1983-2006	Number per angler-trip	Angler-trips included if species was targeted or caught ($\mathrm{A}+\mathrm{B} 1+\mathrm{B} 2$); Nominal	Same as fishery	Fishery dependent	Y
Independent	MARMAP Chevron trap	Atlantic	1988-2006	Number per trap-hr	Nominal	-	Low sample sizes; freq. anmual zero ($n=4$ to 41 per year)	N
Independent	MARMAP Hook and line	Atlantic	1979-2002	Number per hook-hr	Nominal	-	Low sample sizes; freq. annual zeros ($\mathrm{n}=0$ to 39 per year)	N
Independent	MARMAP Short longline	Atlantic	1980-2006	Number per hook-hr	Nominal	-	Low sample sizes; freq. annual zeros ($\mathrm{n}=0$ to 10 per year)	N
Independent	SEAMAP	Atlantic	1990-2006	Number per hectare	Nominal	-	Extremely low sample sizes; mostly annual zeros ($\mathrm{n}=0$ to 4 per year)	N
Independent	USC Baruch Institute nekton survey	South Carolina	-	-	-	-	$\mathrm{n}=0$	N

I ndices Summary Tables

```
Table 5.2. Issues with each data set considered for CPUE.
Fishery dependent indices
Commercial Logbook - Handline (Recommended for use)
    Pros: Complete census
            Covers entire management area
            Continuous, 14-year time series
            Large sample size
    Cons: Fishery dependent
            Data are self-reported and largely unverified
            Little information on discard rates
            Catchability may vary over time and/or abundance
    Issues Addressed:
            Possible shift in fisherman preference [Stephens and MacCall
                (2004) approach]
                    In some cases, self-reported landings have been compared to TIP
                    data, and they appear reliable
                    Increases in catchability over time (e.g., due to advances in
                technology or knowledge) can be addressed in the assessment
                model
Recreational Headboat (Recommended for use)
    Pros: Complete census
            Covers entire management area
            Longest time series available
            Data are verified by port samplers
            Consistent sampling
            Large sample size
            Non-targeted for focal species
    Cons: Fishery dependent
            Little information on discard rates
            Catchability may vary over time and/or abundance
    Issues Addressed
            Possible shift in fisherman preference [Stephens and MacCall (2004)
            approach]
            The impression of some people that trip duration has shifted toward
                    half-day trips is not consistent with the data (Exploratory data
                analysis reveals no such shift on red snapper trips or on headboat
                trips overall. In addition, trip duration is accounted for as a factor
                in the GLM.)
            Increases in catchability over time (e.g., due to advances in
                    technology or knowledge) can be addressed in the assessment
            model
```


I ndices Summary Tables

Species	Saries	Author	Reference	Data Source	Aroa	Years	Sawron	Biomass/ Niomber	Fishery Type	Standarcized	$\begin{gathered} \text { Selectivity } \\ \text { Info } \\ \hline \end{gathered}$	$\begin{gathered} \text { Age } \\ \text { Range } \end{gathered}$	Positive Aspacts	Negative Aspects	Utility for Assessment
Sthris	NC	Amon.	$\begin{aligned} & \text { LCSOSO6- } \\ & \text { DW-01 } \end{aligned}$	$\begin{aligned} & \text { 6 Directed } \\ & \text { longlime boats } \end{aligned}$	Norı̂ Carclima	$\begin{aligned} & 1985- \\ & 1992 \end{aligned}$	All	BiomanNumbr	Comurectial	GLM	None	Noce	Finsric	Not macios spocific, low naytion nizan, posible chergos in 5shing meatodology not accoumed for	Notrecommeaded
SB	LPS	Brown	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-69 } \end{aligned}$	Anglar =xartiow	Viginia-Man	$\begin{aligned} & 1986- \\ & 2004 \end{aligned}$	JunsOctobsr	Nimber	Recraztioun	Lo mastiod	Langt frecusacy	Noce			Unable, ravisit or calculation
LCS	Gillinat Obrecvar	Curson	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-11 } \end{aligned}$	Shus̀ drift gilleat fithery	Flonidn Georgiz	$\begin{aligned} & 1993- \\ & 1995, \\ & 1998- \\ & 2094 \end{aligned}$	All	Nimpose	Commercial	Lomstiod	Langth by mash size (barad on filhery indspandeut stady)	Noce	strederized		Resun with naw affort calculation neod to ztanmpt cales for all LCS scemaios
BT	Gllbat Obsevere	Carloon	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-11 } \end{aligned}$	Sharı̀ drift gllwat filhacy	Floridn Georgiz (AtI)	$\begin{aligned} & 1993- \\ & 1995 . \\ & 1985- \\ & 2004 \end{aligned}$	All	Nimbse	Commercial	Lomsthod	Langithy mash size (batad on firhecy independeut stand)	Noce	sturderizod		Recun with naw affort calculation rastrictad to Athmtic ouly
LCS	PCLL	Carlson 8 Betan	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-12 } \end{aligned}$	PCNMFS Longling Sarvay	NW Flaride	${ }_{2000}^{1993-}$	$\begin{aligned} & \text { Spring, } \\ & \text { Samisa, } \\ & \text { Fall } \end{aligned}$	Nimbes	Imbepandant	Lo mashod	Langt frecusacy	Noce			Uable, need to zanumptcales for all LCS scemarios
BT- Sinveils	PCLL	Carlson 8 Beter	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-12 } \end{aligned}$	PCNDFS Longline Sazvy	NW Flocide	$\begin{aligned} & 1993- \\ & 2000 \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { Sumer, } \\ & \text { Fall } \end{aligned}$	Nimbes	Indepandaut	Lo mosthod	Langth frequancy	Noce			Uasble
LCS	PC Gallnat	Carion 2 Betoz	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-12 } \end{aligned}$	PCNDFS Gilime: Sarvay	NW Flacide	$\begin{aligned} & 1996- \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { Sumes, } \\ & \text { Fall } \end{aligned}$	Nimbes	Indepandaut	Lo moshod	Langth frocquacy	Noce			Urable, naed to zmanpt caks for all LCS scemaios
BT	PC Gillnat	 Betor	$\begin{aligned} & \text { LCS0s/06- } \\ & \text { DW-12 } \end{aligned}$	PCNMFS Giline: Sizvay	NW Flacide	$\begin{aligned} & 1996- \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { Surger, } \\ & \text { Fall } \end{aligned}$	Nimber	Indepandaut	Lo mashod	Langh frecusacy	Noce			Uable
BT- Jinveils	PC Gillast juvauiles	Carlson and Beter	LCS0S/06. DW-12	PCNMFS Giline: Sazvery	NW Floride	$\begin{aligned} & 1996- \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { Sargise, } \\ & \text { Fall } \end{aligned}$	Nimeser	Incopandaut	Lo mashod	Langh frequsucy	Ago 1 to 4 yous			Uable
BT-YOY	$\begin{aligned} & \text { PC Gillnat - } \\ & \text { Ago } 0 \end{aligned}$	Carison and Bethoz	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-12 } \end{aligned}$	PCNDFS Gilme: Sizvery	NW Flacide	$\begin{aligned} & 1996- \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { Sumper, } \\ & \text { Fall } \end{aligned}$	Nimbes	Imbepandaut	Lo mashod	Langth frecusacy	Agro 0			Uable
SB	PC Gillnat	Catson 2 Betor	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-12 } \end{aligned}$	PCNMFS Gilles: Sizvery	NW Flacide	$\begin{aligned} & 1996- \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { Sarges, } \\ & \text { Fall } \end{aligned}$	Nimbes	Indepandaut	Lo mashod	Langth frecusury	Noce			Uable, 25 nominal serien
LCS	ENP	Carlson ot al	$\begin{aligned} & \text { LCSOS/06- } \\ & \text { DW-13 } \end{aligned}$	Anglar - mantig	Eracglades	${ }_{2002}^{1972-}$	$\begin{aligned} & \text { All(wat } \\ & \text { zaddry } \\ & \text { ceswons) } \end{aligned}$	Nimeser	Recrazticesal	Lo mathod	None	Noce			Uasble, only possibls for total LCS

Suggested Fields for I ndices Description Summary Table

Series Name
Document \#
Data Source (longline obs; angler interview)
Area
Years
Season
Biomass/ number
Units
Sampling Design
Fishery Type (FI , FD-R, FD-C)
Standardization Method (GLM; Lo method; none)
Selectivity info
Age range
Size range

Suggested Fields for I ndices "Usefulness" Summary Table

Series Name
Document \#
Pros
Cons
I ssues Addressed
Recommendation for use (Base, sensitivity, not)

Indices Values

Table 5.3 The recommended indices of abundance and the associated CVs. These are the raw indices scaled to the mean each time series (e.g. the mean value of each index $=1.0$).

	Fisheries-independent				Fisheries-dependent									
	Bottom Longline		Video		Comm LL		Comm HL		HB (18" MSL)		HB (20" MSL)		MRFSS	
Year	Index	CV												
1986									0.7449	0.6107			0.6877	0.5493
1987									1.1838	0.4983			0.6576	0.5638
1988									1.0426	0.5136			0.9247	0.4661
1989									1.2184	0.5011			1.3183	0.4346
1990					0.7737	0.1327	0.6959	0.2279	0.8103	0.6458	0.8481	0.5446	1.8693	0.4526
1991					0.7786	0.1204	0.6475	0.2119			0.9423	0.5352	1.1475	0.4996
1992					0.6804	0.1333	0.7476	0.1961			0.7955	0.5576	1.2673	0.4226
1993			0.8879	0.1842	0.9729	0.1060	0.6832	0.1751			0.7635	0.5365	0.7809	0.4801
1994			0.8557	0.1531	0.8317	0.1037	0.8822	0.1664			0.8033	0.5433	0.9319	0.4468
1995			0.6481	0.2147	0.9769	0.1028	0.8712	0.1642			0.9190	0.5423	0.7691	0.5021
1996			0.9199	0.1602	0.8437	0.1029	0.6078	0.1704			0.7417	0.5698	0.6046	0.5141
1997			0.9445	0.1261	1.0119	0.0990	0.5657	0.1747			0.5691	0.5777	0.5448	0.5383
1998					0.9825	0.1013	0.5366	0.1745			0.6346	0.5745	0.7546	0.4446
1999					1.0022	0.1047	0.7175	0.1638			0.6312	0.5568	0.9295	0.4019
2000	0.5646	0.6673			0.9942	0.1013	0.9867	0.1583			0.8734	0.5499	1.0472	0.3967
2001	0.6539	0.2889			1.3186	0.0973	1.4534	0.1552			0.8444	0.5314	0.8691	0.3973
2002	1.6735	0.8118	1.1164	0.1012	1.0246	0.1011	1.5219	0.1518			0.9270	0.5296	0.9032	0.3919
2003	1.0420	0.2289			0.9776	0.1010	1.1400	0.1508			1.3753	0.4891	1.1128	0.3610
2004	1.3907	0.1925	1.2912	0.0865	1.2777	0.0982	1.7734	0.1477			2.0143	0.4701	1.6755	0.3046
2005	0.6753	0.5804	1.3365	0.0710	1.5529	0.0984	2.1694	0.1495			2.3172	0.4693	1.2045	0.3378

Table 3.2 Available catch rates series for the small coastal shark complex, Atlantic sharpnose, blacknose, bonnethead, and finetooth sharks. Absolute index is the absolute estimated mean CPUE, relative index is the estimated mean CPUE divided by the overall mean and the CV is the estimated precision of the mean value. Type refers to whether the index is fishery - independent (FI) or fishery-dependent (FD), recreational (R) or commercial (C). Recommendation refers to the recommendation by the Indices Working Group to include the particular index as a base index (Base), use it for sensitivity rums (Sensitivity) or not recommended for use in the assessment (NR) AS indicates the series is for an age-structured model (excludes young of the year individuals), SPM indicates a series useful for a supplus production approach. Series with no model indicated are useful for both approaches.
Small Coastal Shark Complex

Document Number	Series Name	Type	Recommendation	Index			
				Year	Absolute	Relative	CV
SEDAR 13-DW-05	PCLL	FI	Base	1993	0.517	0.843	0.507
				1994	0.235	0.383	0.544
				1995	0.343	0.559	0.483
				1996	1.073	1.750	0.092
				1997	0.594	0.969	0.185
				1998	0.439	0.716	0.378
				1999	1.170	1.908	0.116
				2000	0.534	0.871	0.298
SEDAR 13-DW-06	PC Gillnet	Fl	Base	1996	5.091	1.817	0.238
				1997	14.715	5.251	0.144
				1998	1.121	0.400	1.438
				1999	1.174	0.419	1.253
				2000	0.697	0.249	1.294
				2001	1.327	0.474	0.732
				2002	1.167	0.416	1.013
				2003	1.454	0.519	0.531
				2004	0.668	0.238	0.896
				2005	0.611	0.218	0.645
SEDAR 13-DW-09	Gillnet Obs	FD-C	Base	1993	3.014	0.149	0.879
				1994	9.942	0.490	0.172
				1995	10.934	0.539	0.218
				1996			
				1997			
				1998	20.516	1.011	0.130
				1999	12.287	0.808	0.109
				2000	9.998	0.493	0.140
				2001	5.548	0.273	0.220
				2002	72.233	3.560	0.016
				2003	11.597	0.572	0.133
				2004	8.254	0.407	0.180
				2005	58.842	2.900	0.029

FIGURES

I NDEX PLOTS

I NDEX COVERAGE MAPS

CORRELATI ONS/ PAI RWI SE COMPARI SONS

I NDEX PLOTS

Original LCS (Fisheries Dependent)

Figure 3.1. Fishery dependent catch rate series for the original large coastal shark complex containing 22 species. Solid lines indicate base case indices while dashed lines are for series to be used in sensitivity analysis. Series are scaled (each series is divided by the mean of the years within that series which overlap between all series) to appear on a common scale.

Figure 3.2. Fishery independent catch rate series for the original large coastal shark complex containing 22 species. Solid lines indicate base case indices while dashed lines are for series to be used in sensitivity analysis. Series are scaled (each series is divided by the mean of the years within that series which overlap between all series) to appear on a common scale.

I NDI CES COVERAGE MAPS

B. Atlantic Sharpnose Shark

Figure 3.11. General geographic coverage of relative abundance indices reviewed at the Data Workshop.

I NDI CES COVERAGE MAPS

E. Blacknose Shark

SEDAR 13

COMPARISONS

Figure 2.3.1. Pairwise scatterplots of the abundance indices used in fitting the base case for the Gulf of Mexico.

[^0]: No-rescaling necessary

