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ARTICLE

Forecasting for Recreational Fisheries Management:
What’s the Catch?

Nicholas A. Farmer*
National Marine Fisheries Service, Southeast Regional Office, 263 13th Avenue South, St. Petersburg,

Florida 33701, USA

John T. Froeschke
Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa,

Florida 33607, USA

Abstract
The Magnuson–Stevens Fishery Conservation and Management Reauthorization Act of 2006 required regional

fishery management councils to implement annual catch limits (ACLs) for nearly all stocks under U.S. federal
management. Since 2011, the number of stocks requiring ACLs (and monitoring) has increased nearly 10-fold, with
strict accountability measures requiring either in-season quota closures or shortening of subsequent seasons to
avoid ACL overages. Robust forecasts of landings can also provide a projected baseline for evaluation of proposed
management alternatives. We compared generalized linear models (GLMs), generalized additive models (GAMs),
and seasonal autoregressive integrated moving average (SARIMA) models in terms of fit, accuracy, and ability to
forecast landings of four representative fish stocks that support recreational fisheries in the southeastern United
States. All models were useful in developing reliable forecasts to inform management. The GAMs provided the best
fit to the observed data; however, the modeling approaches of the SARIMA model and GLM provided the best
forecasts for most scenarios. The SARIMA model and GLM also provided the best predictions of the seasonal trend
in landings, a desirable feature for in-season quota monitoring. The SARIMA model was more sensitive and the
GLM was less sensitive to recent trends, providing a useful “bookend” for forecasts. The time span of input data
affected forecast accuracy from all model types considered. This study suggests multiple forecasting models should
be investigated and performance metrics carefully selected and evaluated, as no single model is likely to perform
best for all stocks of interest.

The Magnuson–Stevens Fishery Conservation and Manage-

ment Reauthorization Act of 2006 requires regional fishery

management councils to specify annual catch limits (ACLs) at a

level such that overfishing does not occur. Annual catch limits

are required for all stocks under U.S. federal management

except for stocks with annual life cycles and those managed by

international agreements in which the USA participates. This

provision was implemented in 2010 or earlier for stocks subject

to overfishing and in 2011 for all other federally managed

stocks. This requirement resulted in a nearly 10-fold increase in

the number of ACLs that must be monitored (from 2012 for-

ward) relative to previous years (NMFS 2014). To address this

challenge, methods for forecasting fisheries landings and projec-

ting season lengths to avoid ACL overages are needed. Reliable

forecasting methods are needed especially for recreational fish-

eries in the southeastern region of the United States. In this

region, recreational landings comprise the majority of total land-

ings for many species (Coleman et al. 2004); however, most

have limited in-season harvest information available (i.e., data

available in 2-month “waves” after a 45-d delay for each wave).
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Forecasting fish landings is a critical element in the manage-

ment of fisheries stocks because it can inform strategy develop-

ment and policy decisions on timelines necessary for effective

management (Stergiou and Christou 1996; Makridakis et al.

2008). Forecasts can be used to apply in-season or postseason

accountability measures and also to provide a baseline for fore-

casting the impacts of proposed management actions. To date,

forecasting applications in fishery management applications

are limited. Ward et al. (2014) evaluated a suite of models

across more than 2,000 vertebrate taxa and provided some gen-

eral guidance. In the U.S. South Atlantic and Gulf of Mexico,

Hanson et al. (2006) evaluated three models used to forecast

annual landings of Atlantic Menhaden Brevoortia tyrannus and

found that multiple regression and artificial neural networks

could be used for this long-term commercial fishery. Growth

and production of brown shrimp Penaeus aztecus are also fore-

casted in the Gulf of Mexico based on environmental condi-

tions in estuaries (Adamack et al. 2011). To be useful,

appropriate methodologies need to be developed and evaluated,

weighing the tradeoffs of model complexity, performance, and

the ability to inform management (Tsitsika et al. 2007).

Approaches to forecasting fish landings are varied but gener-

ally fall into four broad categories: (1) using the previous

year’s landings, (2) population dynamics models, (3) correla-

tion-based regression models, and (4) time series models.

Population dynamics models are advantageous because

they attempt to characterize factors affecting abundance, pro-

ductivity, and growth potential of a stock (Hilborn and Walters

1992; Buckland et al. 2004; Newman et al. 2006). Unfortu-

nately, these models are data intensive and require substantial

time, effort, and resources to develop (Ward et al. 2014). Due

to these limitations, stock assessment models are only devel-

oped every 3–5 years for economically important species in

the southeastern United States. For many federally managed

species, adequate data are unavailable and resources are insuf-

ficient to develop population dynamics assessment models

(Carruthers et al. 2014; Berkson and Thorson 2015). More-

over, when forecasting is the primary objective, population

dynamics models are not necessarily superior to other less-

intensive methods as they require estimates of many parame-

ters and have a tendency to overfit, limiting their forecasting

performance (Clark 2004).

Correlation-based regression models (e.g., linear models)

have been used successfully to predict menhaden landings in

U.S. Atlantic waters and the Gulf of Mexico since at least

1975 (Schaaf et al. 1975) and were used for more than three

decades to produce annual forecasts of landings (Hanson et al.

2006). However, landings for many species follow nonlinear

trajectories where the response variable may be more appro-

priately modeled using non-Gaussian error distributions

(Ward et al. 2014). Generalized linear models (GLMs)

(Nelder and Wedderburn 1972) are extensions of linear mod-

els that can accommodate response variables following expo-

nential family distributions (e.g., Poisson, negative binomial)

and may be superior to linear models for modeling fish land-

ings data. Generalized additive models (GAMs) (Wood 2006)

extend the GLM by allowing nonparametric relationships

between the response and explanatory variables (Wood 2003).

Rigorous routines for model selection and validation may pre-

vent overfitting that occurs with these models (Zuur et al.

2010). Most correlation-based methods do not account for

time explicitly in the model, although some methods may pro-

vide this capability (e.g., generalized estimating equations). If

covariates are used, a determination of future values of covari-

ates is required to develop a forecast. In some cases, this can

be quite realistic (e.g., landings restriction due to closed sea-

son); however, in other cases it may be difficult or impossible

to predict (e.g., environmental conditions).

Time-series models are conceptually simple and popular

tools for forecasting. Seasonal autoregressive integrated mov-

ing average (SARIMA) models can be constructed using only

the information contained in the series (Dennis et al. 1991;

Holmes 2001; Ives et al. 2010) and aim to describe the auto-

correlation in these data (Hyndman and Athanasopoulos 2014;

Ward et al. 2014). More simply, this can be thought of as a

multiple regression model with lagged values as covariates.

These models are flexible and assume that future conditions

are similar to the past conditions that generated these observed

data. The SARIMA models assume that the time series is sta-

tionary with stable variance throughout the time period. Unfor-

tunately, these assumptions are frequently violated with

fisheries data, although this can often be resolved through

differencing and/or transformation, especially to capture sea-

sonal trends (Box et al. 2013).

The purpose of this study was to evaluate a suite of

approaches to produce short-term forecasts at 2-month inter-

vals (i.e., waves) necessary to inform fisheries management

decisions for U.S. federally managed species in the Gulf of

Mexico and Atlantic Ocean. Specifically, we considered

approaches that could be fit with minimal data (e.g., landings

data) and applied to a range of species with varied life histories

and fisheries characteristics. We used four representative fish

stocks (or stock complexes) that support recreational fisheries

currently managed by the South Atlantic Fishery Management

Council (SAFMC) or the Gulf of Mexico Fishery Management

Council (GMFMC) and compared the performance of GLMs,

GAMs, and SARIMA models in terms of model fit, accuracy,

and forecasting ability. The goal of these approaches was to

develop reliable methods for predicting the timing of in-season

closures to avoid exceeding an ACL and predicting total

annual landings in the absence of a quota closure.

METHODS

Recreational Fisheries Catch Data

Recreational landings data were obtained from the NMFS

Southeast Fisheries Science Center (SEFSC) ACL data set
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(accessed May 2013), which provided aggregated landings

data from 1986 to 2012 from the Marine Recreational Fisher-

ies Statistics Survey (MRFSS), the Southeast Headboat Survey

(HBS), and the Texas Parks and Wildlife Department (TPWD)

Creel Survey. Landings data from the various surveys are pro-

vided in both numbers and weight (pounds). The ACL data set

provides improved quality assurance and quality control on

the raw data generated by each of these surveys; for example,

the ACL data set implements a hierarchical procedure to back-

fill missing weight estimates from MRFSS (now MRIP; http://

www.st.nmfs.noaa.gov/recreational-fisheries/index). In short,

samples are aggregated upward (i.e., wave, mode) to ensure

adequate sample size (i.e., �30).

The MRFSS (http://www.st.nmfs.noaa.gov/recreational-

fisheries/index) intercepts collect data on port agent observed

landings (A catch) and angler-reported landings (B1 catch)

and discards (B2 catch) in numbers by species, 2-month wave

(e.g., wave 1 D January–February, . . . wave 6 D November–

December), area fished (inland, state, and federal waters),

mode of fishing (charter, private and rental, shore), and state

(North Carolina to Louisiana). These dockside intercepts are

expanded using effort data collected via telephone surveys

(private and rental: random digital dial during each wave; for-

hire: weekly 10% random sample). In 2012, MRFSS was nom-

inally replaced by the Marine Recreational Information Pro-

gram (MRIP). In 2013, the MRFSS survey methodology was

modified by MRIP, resulting in some changes that are still

being calibrated by SEFSC. Thus, MRIP values from 2013 for-

ward were not considered for this modeling exercise.

Landings of headboats (i.e., recreational vessels where

customers pay “by the head”) are calculated using a combina-

tion of logbook reports and dockside sampling, and adjust-

ments to landings are made based on underreporting and

misreporting determined through dockside validation by port

agents. Fishing records from the Southeast Headboat Survey

(http://www.sefsc.noaa.gov/laboratories/beaufort/sustainable/

headboat/) contain trip-level information on number of

anglers, trip duration, date, area fished, landings (number of

fish), and releases (number fish) by species.

The TPWD Creel Survey (https://tpwd.texas.gov/fishboat/

fish/didyouknow/creel.phtml) generates estimates of landings

for private and rental boats and charter vessels fishing off the

Texas coast. The TPWD conducts a stratified random angler-

intercept survey at specified boat-access sites throughout the

year. Landings are reported by TPWD in numbers by “high-

use” (May 15–November 20) and “low-use” (November 21–

May 14) time periods, area fished (state and federal waters),

and mode (charter, private and rental). The high- and low-use

landings estimates provided by TPWD are re-estimated by

NMFS personnel to correspond to the MRFSS 2-month waves.

Landings time series for three recreationally important

stocks and one incidentally caught stock complex with rela-

tively simple management histories were assembled. Land-

ings for Vermilion Snapper Rhomboplites aurorubens and

Gray Snapper Lutjanus griseus managed by the GMFMC as

well as Red Porgy Pagrus pagrus and the “grunts” complex

managed by the SAFMC were computed as the sum of

MRFSS, HBS, and TPWD landings by year and wave. The

SAFMC grunts complex contains White Grunt Haemulon

plumierii, Margate H. album, Sailor’s Choice H. parra, and

Tomtate H. aurolineatum; most of these stocks are inciden-

tally caught on trips targeting other species. During the years

considered for this analysis, none of these stocks were subject

to quota closures.

Management histories were reconstructed for all four spe-

cies to account for the timing of federal recreational quota clo-

sures and closed seasons. For projection purposes, all

recreational landings were assigned to 2-month waves. Model

inputs for each species were expressed as landings (in pounds

whole weight) per open day (landings were assumed equal for

all open federal days within a wave). Expressing landings as a

daily rate was important for determining the date a catch limit

might be exceeded and also for handling any closures in the

management history of the stock. As states adopted compatible

seasonal regulations for the species of concern, all landings

were assumed to occur within the federal season; thus, the fed-

eral open days by wave were used as the divisor for computing

wave-specific landings per day. To reduce prediction bias

associated with reductions in landings due to fisheries closures

in the Gulf of Mexico following the Deepwater Horizon–BP

oil spill in April 2010, values for April–December 2010 in the

Gulf of Mexico were recomputed as the average of 2009 and

2011 values for the same time period. No adjustments were

made for more spatiotemporally discrete events such as hurri-

canes and red tides.

Modeling Approach

Time series of recreational harvest for each species were fit-

ted using GLMs (Hardin and Hilbe 2007), GAMs (Wood

2006), and SARIMA models (Box et al. 2013). Projected land-

ings per day by wave were projected in weight (pounds)

instead of numbers because the ACLs for these stocks are

specified in pounds.

GLM.—Long-term and seasonal trends in the landings-per-

day time series were captured using a GLM, fit with Proc

GENMOD in SAS version 9.2 software (2000; SAS Institute,

Cary, North Carolina). Mean landings per day (lb) were depen-

dent upon a linear predictor of year and a quadratic predictor

of wave, which were linked via a log-link function with a neg-

ative binomial response error distribution (Nelder and

Wedderburn 1972). Residual diagnostics and Akaike’s infor-

mation criterion (AIC; Akaike 1974) values were used to

select the final model configurations.

GAM.—Generalized additive models were also fit to each

time series. Mean landings per day (lb) were predicted using a

cubic-spline smoother (s) for the main effects (year) and a ten-

sor product spline (te) (De Boor et al. 1978) for the interaction
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term (wave, year) (Gasper et al. 2013). The GAMs were fit

using the mgcv library (Wood 2006) in R version 3.0.2 (R

Development Core Team 2013). Backward selection was used

to determine whether predictors or interactive effects could be

removed without compromising model performance. Akaike’s

information criterion and a log-likelihood ratio test were used

to determine whether more complex models were warranted

(Froeschke et al. 2012).

SARIMA model.—Time series exhibiting a long-term trend

and a seasonal trend may be well-suited to a SARIMA model

(Box et al. 2013). In a SARIMA(p,d,q)£(P,D,Q) model, the

autoregressive component (p) represents the lingering effects

of previous observations, the integrated component (d) repre-

sents temporal trends, and the moving average component (q)

represents lingering effects of previous random shocks (or

error). The SARIMA models were implemented using Proc

ARIMA in SAS version 9.2 (SAS Institute). All possible com-

binations of single-difference SARIMA models for landings

per day by wave were considered (Table A.1 in the Appendix).

A single-difference SARIMA model only considers a maxi-

mum of one differencing term in the annual and one differenc-

ing term in the seasonal component. All SARIMA models

were fit using conditional least squares. Stationarity tests were

used to guide differencing selection. Final SARIMA model

selection was guided by the examination of autocorrelations,

inverse autocorrelations, partial autocorrelations, cross-corre-

lations, residual diagnostics, and AIC.

Model Evaluation and Performance

Time series of three different lengths (i.e., 1999–2011,

2004–2011, and 2007–2011) were compared in terms of

model fit and forecasting performance. Exploring time series

of varying lengths is important as stocks vary in the period

for which reliable landings data exist, and this approach per-

mits a mechanism to examine trade-offs with model complex-

ity across time series of different lengths that are not

confounded by individual species effects. Although data were

available prior to 1999, preliminary projections suggested

model performance was occasionally improved by truncating

the time series but not by extending it to before 1999. To

evaluate forecast utility, we evaluated the proportion of varia-

tion explained by the covariates (R2), and the mean error

(i.e., observed versus fitted values) for the final year of data.

For Atlantic stocks, we also removed the terminal year from

the time series (i.e., “drop-one” approach), refit the model to

2004–2010 data, and predicted landings for 2011 to provide a

more robust evaluation of forecast performance. This was

accomplished by using the fitted model to forecast beyond

the data that were used to build the model and more closely

simulate how these models would be used in practice by

resource managers. The deviance between the forecast and

the actual landings in the final year provided an additional

estimate of accuracy. This drop-one approach was only

applied to Atlantic stocks due to the confounding effect of

having up to 36.6% of the Gulf of Mexico EEZ closed to

fishing in 2010 because of the Deepwater Horizon–BP oil

spill. Finally, a variation on the drop-one approach was

applied to all four stocks by plotting cumulative landings

time series to evaluate model fits from 1999–2011, 2004–

2011, and 2007–2011 data relative to observed values in

2011 and model forecasts relative to observed values in 2012.

A simple approach of using the previous year’s landings as a

forecast was also explored for all scenarios. As SARIMA

uses a Gaussian error structure and permits negative forecast

values, all SARIMA-based predictions of negative landings

within a wave were converted to zeroes for these

comparisons.

RESULTS

Most stocks exhibited long-term trends as well as seasonal

periodicity in landings. Landings were typically lowest during

winter (i.e., waves 1 and 6) and peaked during summer (i.e.,

waves 3 and 4). Model statistics are provided in Table 1. For

the longer time series (i.e., 1999–2011 and 2004–2011), a

SARIMA(0,1,1)£(0,1,1) structure fit the data best of the dif-

ferent SARIMA models considered, meaning the data were

differenced at the previous time step and the seasonal time

step, and a moving average term was used on both to fit the

data. In the shortest time series evaluated (i.e., 2007–2011), a

SARIMA(1,1,0)£(0,1,1) structure fit the data best of the dif-

ferent SARIMA models considered, indicating an autoregres-

sive term did better at capturing the trend with a limited set of

data than a moving average.

Gulf of Mexico

From 1999 to 2011, Vermilion Snapper landings peaked

during the summer each year and total annual landings

increased during the time series (Figures 1, 2). All modeling

approaches captured this pattern after appropriate model fitting

and selection routines. For Vermilion Snapper, R2 increased

with shorter time series for all models and the GAM model

provided the best fit to the observed data (Table 1). Examin-

ing the mean error during the final year of data indicated the

SARIMA model fits were much closer to the observed values,

and the lowest mean error in the final year was provided by

the shortest time series (2007–2011; SARIMA model: 162.66

lb/d; GAM: 735.01 lb/d; GLM: 607.86 lb/d). This time series

was nonstationary and had increasing rates of landings toward

the end of the period. Of the models considered, the SARIMA

model most closely captured this pattern in the observed data

and only underestimated landings by 5% for the 2007–2011

input time series. The other modeling approaches resulted in

much higher underestimation of total landings (19–53%), and

the GLM showed the greatest fluctuation in accuracy depend-

ing upon input time series.

FORECASTING FOR FISHERIES MANAGEMENT 723



T
A
B
L
E
1
.

G
o
o
d
n
es
s
o
f
fi
t
(R

2
),
m
ea
n
er
ro
r
in

te
rm

in
al

y
ea
r
ac
ro
ss

w
av
es

(M
E
;
lb
/d
),
to
ta
l
p
er
ce
n
t
er
ro
r
in

fi
n
al

p
ro
je
ct
ed

cu
m
u
la
ti
v
e
la
n
d
in
g
s
(T
E
),
an
d
m
ea
n
er
ro
r
in

p
ro
je
ct
ed

y
ea
r
ac
ro
ss

w
av
es

(D
ro
p
1
)
fo
r
d
if
fe
re
n
t
st
o
ck
s,
m
o
d
el
in
g
ap
p
ro
ac
h
es
,
an
d
ti
m
e
se
ri
es
.
D
ro
p
1
d
en
o
te
s
fo
re
ca
st
s
w
h
er
e
th
e
te
rm

in
al

y
ea
r
o
f
d
at
a
ar
e
re
m
o
v
ed
,
th
e
m
o
d
el

re
fi
t,
an
d
th
e
te
rm

in
al

y
ea
r
fi
t
is
co
m
p
ar
ed

w
it
h
th
e

o
b
se
rv
ed

v
al
u
es
;
P
re
v
Y
r
D

p
re
v
io
u
s
y
ea
r,
N
A
D

n
o
t
ap
p
li
ca
b
le
.

S
to
ck

M
o
d
el

R
2

(1
9
9
2
–

2
0
1
1
)

R
2

(1
9
9
9
–

2
0
1
1
)

R
2

(2
0
0
4
–

2
0
1
1
)

R
2

(2
0
0
7
–

2
0
1
1
)

M
E

(1
9
9
2
–

2
0
1
1
)

M
E

(1
9
9
9
–

2
0
1
1
)

M
E

(2
0
0
4
–

2
0
1
1
)

M
E

(2
0
0
7
–

2
0
1
1
)

%
T
E

(1
9
9
2
–

2
0
1
1
)

%
T
E

(1
9
9
9
–

2
0
1
1
)

%
T
E

(2
0
0
4
–

2
0
1
1
)

%
T
E

(2
0
0
7
–

2
0
1
1
)

M
E
_

D
ro
p
1

(2
0
0
4
–

2
0
1
0
)

%
T
E
fi
t2
0
1
0

_
D
ro
p
1

(2
0
0
4
–
2
0
1
0
)

%
T
E
p
re
d
ic
t

2
0
1
1

_
D
ro
p
1

(2
0
0
4
–

2
0
1
0
)

G
u
lf
o
f

M
ex
ic
o

V
er
m
il
io
n

S
n
ap
p
er

S
A
R
IM

A
0
.6
6

0
.6
9

0
.7
3

0
.8
6

8
9
5

5
1
8

5
1
3

1
6
3

2
9

1
7

1
7

¡5
N
A

N
A

N
A

G
A
M

0
.7
0

0
.7
9

0
.8
1

0
.9
1

1
,1
4
0

1
,0
3
1

9
9
5

7
3
5

¡3
6

¡3
3

¡3
2

¡2
3

N
A

N
A

N
A

G
L
M

0
.7
5

0
.7
5

0
.7
5

0
.9
1

1
,6
6
0

1
,0
6
7

1
0
7
0

6
0
8

¡5
3

¡3
4

¡3
4

¡1
9

N
A

N
A

N
A

P
re
v
Y
r

N
A

N
A

N
A

N
A

1
,0
9
7

1
,0
9
7

1
,0
9
7

1
,0
9
7

¡3
4

¡3
4

¡3
4

¡3
4

N
A

N
A

N
A

G
u
lf
o
f

M
ex
ic
o

G
ra
y

S
n
ap
p
er

S
A
R
IM

A
0
.6
4

0
.6
0

0
.6
6

0
.8
5

1
,0
0
2

8
4
0

1
,3
0
7

5
9

¡2
5

¡2
1

¡3
3

2
N
A

N
A

N
A

G
A
M

0
.7
0

0
.7
9

0
.8
1

0
.9
1

4
8
0

5
9
1

2
,4
7
5

6
5
0

1
8

2
2

9
3

2
4

N
A

N
A

N
A

G
L
M

0
.5
0

0
.5
2

0
.6
3

0
.6
5

2
,0
3
4

1
,8
9
2

9
0
0

4
6
3

7
6

7
1

3
4

1
7

N
A

N
A

N
A

P
re
v
Y
r

N
A

N
A

N
A

N
A

3
8
5

3
8
5

3
8
5

3
8
5

1
6

1
6

1
6

1
6

N
A

N
A

N
A

A
tl
an
ti
c
g
ru
n
ts

co
m
p
le
x

S
A
R
IM

A
0
.5
1

0
.4
2

0
.3
7

0
.3
1

2
1
2

5
1

3
6
8

1
6
9

¡2
5

¡6
¡4

2
¡1

9
7
3
5

7
¡6

7

G
A
M

0
.7
0

0
.7
9

0
.8
1

0
.9
1

6
8

8
0

4
8
4

7
9

¡1
¡1

0
2
1
8

1
7

¡2
6

G
L
M

0
.4
5

0
.4
5

0
.5
0

0
.6
4

2
9
0

3
3
2

1
1
9

6
6

3
3

3
8

1
3

¡8
2
1
3

5
2

2
4

P
re
v
Y
r

N
A

N
A

N
A

N
A

1
0
4

1
0
4

1
0
4

1
0
4

¡1
2

¡1
2

¡1
2

¡1
2

1
0
4

8
6

¡1
2

A
tl
an
ti
c
R
ed

P
o
rg
y

S
A
R
IM

A
0
.4
0

0
.6
1

0
.6
6

0
.6
5

3
6

1
7

1
1

5
8

¡1
2

¡5
¡1

¡2
5

6
6

4

G
A
M

0
.7
2

0
.7
0

0
.8
4

0
.8
5

1
4
3

4
3

3
0

0
¡2

2
¡2

2
¡1

5
1
2
9

¡2
0

¡ 6
6

G
L
M

0
.6
3

0
.6
0

0
.6
6

0
.8
5

5
1
1
4

2
0

5
2

2
5
8

1
0

¡2
7

6
7

5
1

3
4

P
re
v
Y
r

N
A

N
A

N
A

N
A

1
8

1
8

1
8

1
8

¡9
¡9

¡9
¡9

1
8

4
6

¡9

724



From 1999 to 2011, Gray Snapper landings peaked during

the summer each year and total annual landings increased

and then decreased during the time series (Figures 1, 3). As

with Vermilion Snapper, all three models captured this pat-

tern and R2 increased with shorter time series for all three

model approaches; the GAM was the best fit to the observed

data (Table 1). In terms of explained variance, the GLM and

SARIMA model were comparable although the SARIMA

model had lower mean error in the final year of the times

series. The lowest mean error in the final year was provided

by the shortest time series (2007–2011; SARIMA model:

59.31 lb/d; GAM: 650.30 lb/d; GLM: 463.01 lb/d). The time

series was nonstationary; however, the greatest annual land-

ings of Gray Snapper occurred in the middle third of the time

series. Fits of regression models to the final year in the time

series were highly dependent on the input time series

selected, and in most cases were outperformed by the previ-

ous year’s landings. In the shortest time series considered

(i.e., 2007–2011), the SARIMA model provided the best fit,

overestimating cumulative landings by only 2%. The SAR-

IMA model produced negative landings predictions for some

waves (Figure 3).

FIGURE 1. Time series of recreational landings data from 1986 to 2012, in millions of pounds (MP) whole weight, for Gulf of Mexico Gray Snapper and Ver-

milion Snapper, and Atlantic grunts complex and Red Porgy, by data source (Texas Parks and Wildlife Department Creel Survey [TPWD], Marine Recreational

Fisheries Statistics Survey [MRFSS], and Southeast Headboat Survey [HBS]).
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Atlantic Ocean

Red Porgy annual landings were relatively stable from 1999

to 2012 with the exception of a trough in 2000 and a peak in

2007 (Figure 1). Red Porgy displayed a distinct seasonal pat-

tern with landings rates peaking during summer each year

(Figure 4), and this pattern was captured by all models. Model

fits improved with shorter time series and the GAM provided

the best fit to the observed data (Table 1). Examining the

mean error during the final year of data indicated the SARIMA

model fits were much closer to the observed values. The low-

est mean error in the final year was provided by the middle

time series (2004–2011; SARIMA model: 10.51 lb/d; GAM:

43.33 lb/d; GLM: 20.41 lb/d). Of the models considered, the

SARIMA model most closely captured the interannual pattern

in the observed data, and model fits to the 2004–2011 time

series underestimated 2011 cumulative landings by only 1%.

From 1999 to 2011, landings of the grunt species complex

peaked during summer each year and total annual landings were

relatively stable over the study period (Figures 1, 5). Similar to

the other species examined, the explained variance in annual

landings of grunts for all models increased with shorter time

series and the GAM provided the best fit to the observed data

(Table 1). In terms of explained variance, the GLM and SAR-

IMA model were comparable, although the SARIMA model

was more accurate than GLM when the fitted and observed val-

ues were compared in the final year of the times series. The low-

est mean error in the final year was provided by the GAM in the

middle time series (2004–2011; SARIMA model: 368.10 lb/d;

GAM: 4.38 lb/d; GLM: 119.34 lb/d). There was a spike HBS

andMRFSS landings in wave 3 in 2007 that was not captured by

anymodels.

Forecast and Summary

The trend for the grunts complex was dynamic (see Fig-

ure 5). The drop-one-scenario model fits to the final year were

excellent for the SARIMA model (only 7% error), but predic-

tions from the SARIMA model were poor (a 67% underesti-

mate). Both the SARIMA model and the GAM overweighted

the long-term decline in landings (Figure 6). For the Atlantic

grunts complex the most accurate prediction was provided by

the previous year’s landings. For Red Porgy, the SARIMA

model provided the best model fit to the final year of data (a

6% overestimate) and the best forecast accuracy (a 4% overes-

timate). Landings levels in 2011 for both stocks were within

the long-term range of previous landings levels.

Examination of model fits to cumulative observed landings

for 2011 indicated that in 9 of 12 scenarios, model fits from

FIGURE 2. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray line) were fit to landings data (lb/d) of Gulf of Mexico Ver-

milion Snapper from 1999 to 2011 (open circles) to evaluate model fits across model types (GLM, GAM, and SARIMA model) and times series (1999–2011,

(2004–2100, and 2007–2011).
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the SARIMA model were superior to the GLM and GAM

(closer to observed values; Figure 7). The SARIMA model

CIs were much larger than those for fitted GLM or GAM mod-

els (Figure 7). For SARIMA models, the CI contained the

observed values in all 12 scenarios examined, whereas the CIs

estimated using GLM and GAM did not always contain the

observed values. A comparison of the percent deviation from

the observed cumulative landings trend by wave, across stocks

and time series, indicated that GLM provided the best overall

model fits (0.2% § 36.2% error; mean § SD), followed by

SARIMA model (5.7% § 76.7%). The GAM and the previous

year’s landings provided similar overall predictive error

(13.9% § 31.1% and 13.2% § 43.3%, respectively). One

undesirable feature of the SARIMA model is that declining

trends in landings during a given wave may be forecast as neg-

ative landings, as observed with Gulf Gray Snapper (Figure 3).

In this study, negative forecasts were replaced with zeroes;

however, it may be preferable to substitute the most recent

year’s landings for that wave to avoid underestimating harvest.

This approach reduced mean error from SARIMA model pre-

dictions by wave across stocks and time series by nearly one-

half (from 5.7% to 2.9%).

Total landings in 2012 for Gulf Vermilion Snapper were

23% lower than 2011 landings, whereas total 2012 landings

for the other stocks evaluated were 35–42% higher than

2011 values. Examination of model forecasts to cumulative

observed landings for 2012 indicated that in 5 of 12 scenar-

ios, mean forecast values of the SARIMA model were clos-

est to observed values predictions (Figure 8). In five of the

remaining seven scenarios, the GLM provided the best pre-

dictions (Figure 8). For Gulf Gray Snapper, the SARIMA

model provided the best prediction using the 2007–2011

time series (8% error). For Gulf Vermilion Snapper, the

GLM provided the best prediction using the 2004–2011

time series (¡1% error). For the Atlantic grunts complex,

the best predictions were obtained from SARIMA model

and GLM using the 1999–2011 time series (¡4% and C4%

error, respectively, in the cumulative landings prediction).

For Red Porgy, the best prediction was from the GLM using

the 1999–2011 time series (¡16% error). The CIs for SAR-

IMA models were much larger than the CIs for fitted GLMs

or GAMs, indicating greater uncertainty (Figure 8). The

SARIMA model tended to be more responsive to short-term

trends in landings that deviated from the long-term average

trend. For SARIMA models, the CIs contained the observed

values in all 12 scenarios examined, whereas the CIs esti-

mated using GLM and GAM did not always contain the

observed values. Overall, SARIMA model fits to seasonal

FIGURE 3. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray line) were fit to landings data (lb/d) of Gulf of Mexico Gray

Snapper from 1999 to 2011 (open circles) to evaluate model fits across model types (GLM, GAM, and SARIMA model) and times series (1999–2011, (2004–

2100, and 2007–2011).
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patterns were less biased, but all model fits became more

similar as the length of the input time series was reduced.

In the 12 scenarios explored, at least one regression-based

approach provided a superior prediction relative to using

the previous year’s landings. The graphical representation

of the track of predicted landings relative to observed land-

ings in Figure 8 can be used to evaluate the in-season moni-

toring performance of the various models. When the

predicted landings track is above the observed landings for

a given model, the model would predict an earlier quota clo-

sure date than necessary, resulting in an ACL underage that

would reduce near-term economic benefits to the fishery.

When the predicted landings track is below the observed

landings for a given model, the model would predict a later

quota closure date than necessary, resulting in an ACL over-

age that would trigger postseason AMs. There was substan-

tial variability within and across models with regard to the

cumulative landings track relative to model predictions.

A graphical comparison of the model-fitting and forecasting

performance of GLM, GAM, and SARIMA model across the

four stocks illustrates the tradeoffs in terms of model fit,

explained variance, and forecasting performance (Figure 9).

In terms of fitting the model to the observed data, the flexibil-

ity of the GAM provided superior fits for each stock relative to

the SARIMA model and GLM. However, in terms of

predictive performance, as indicated by fits to the terminal

year of the time series and accuracy of drop-one scenario fore-

casts, the SARIMA model and GLM were generally superior

to the GAM.

DISCUSSION

Federal requirements implemented in the amended Magnu-

son–Stevens Act (U.S. Congress 2006) require specification

(and monitoring) of ACLs for most federally managed stocks.

Resources are insufficient to develop population-dynamics-

based landings projection models for most managed stocks

(Hilborn and Walters 1992; Hanson et al. 2006). Thus, other

methods must be identified to predict landings rates to ensure

landings remain within prescribed ACLs (Carruthers et al.

2014). Given the large number of stocks that must be moni-

tored (Berkson and Thorson 2015), routines must be robust to

widely varying temporal patterns that characterize recreational

landings patterns for most species (Ward et al. 2014). Similar

to previous efforts with Atlantic Menhaden and Gulf Menha-

den B. patronus, this study suggested statistical forecasting

could be a viable approach to predicting landings (Hanson

et al. 2006; Ives et al. 2010). A major goal of recreational fish-

eries management is to prevent catch limit overages. This can

be accomplished by in-season closures or postseason

FIGURE 4. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray line) were fit to landings data (lb/d) of Atlantic Red Porgy

from 1999 to 2011 (open circles) to evaluate model fits across model types (GLM, GAM, and SARIMA model) and times series (1999–2011, (2004–2100, and

2007–2011).
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adjustments to the regulations or season length in the follow-

ing year. Accurate forecasts of recreational landings are criti-

cal to the application of both of these accountability measures.

Our study suggests semiautomated model-fitting and selec-

tion routines for the SARIMA model or GLM be used to

develop short-term (i.e., 1 year) forecasts to inform manage-

ment decisions; however, the quality and time span of input

data can affect the accuracy of model forecasts. Longer time

series tended to include up and down fluctuations in landings,

whereas cutting the regression input time series omitted these

fluctuations. By fitting to a shorter time series, the short-term

trend tended to be better captured at the expense of long-term

fluctuations in landings. No single model or time series per-

formed best across all stocks of interest; thus, performance

metrics need to be carefully selected and evaluated across mul-

tiple models. Our projections implicitly integrated the highly

correlated terms of landings and effort by expressing landings

rates as landings per open day. Changes in management regu-

lations, environmental conditions, or economic conditions that

might lead to changes in landings per unit effort would lead to

increased uncertainty in forecasts; if these changes have

occurred or are anticipated, they can be incorporated as covari-

ates in the models or the data inputs can be parsed by time

period or by region to better represent anticipated future

conditions.

In general, SARIMA models performed well across a range

of time series and would serve as an appropriate starting point

for forecasting landings. The SARIMA model mean forecasts

were generally unbiased in fits to observed data although con-

fidence limits were consistently greater than those produced

from GLMs or GAMs. The SARIMA models can accommo-

date but do not require additional covariates for either model

building or forecast, a distinct advantage over the GLM and

GAM. For in-season quota monitoring, the manager’s goal is

to close the fishery before the landings exceed the quota, but

without forgoing harvest up to the quota. Thus, the predicted

trajectory of cumulative landings is more important than the

final projected total. Comparisons of the SARIMA model,

GAM, and GLM forecasts fit to the 2011 cumulative observed

landings time series indicated the SARIMA model approach

best fit the cumulative landings time series for most scenarios.

However, for some stocks, GLM performed better than the

SARIMA model and was less sensitive than the SARIMA

model or GAM to recent trends, providing a useful “bookend”

for forecasts.

The SARIMA model forecasts should be treated with skep-

ticism when they generate negative landings values, as they

are likely overfitting a recent trend. Negative forecast values

from any landings forecast model should minimally be

replaced with zero values, as negative landings are not

FIGURE 5. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray line) were fit to landings data (lb/d) of the Atlantic

grunts complex from 1999 to 2011 (open circles) to evaluate model fits across model types (GLM, GAM, and SARIMA model) and times series (1999–2011,

2004–2100, and 2007–2011).
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FIGURE 6. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray line) were fit to landings data (lb/d) of Atlantic Red Porgy

and the grunts complex from 1999 to 2010 (open circles), withholding 2011 landings data (open squares) from the model, to evaluate forecast accuracy across

model types (GLM, GAM, and SARIMA model) and times series (1999–2011, 2004–2100, and 2007–2011).
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FIGURE 7. Cumulative landings plots showing SARIMA model (red), GAM (blue), and GLM (green) model fits and 95% confidence limits (shaded areas) rela-

tive to observed cumulative landings (lb wet weight) for 2011 based on 1999–2011, 2004–2011, and 2007–2011 time series data for Atlantic Red Porgy, Atlantic

grunts complex, Gulf of Mexico Gray Snapper, and Gulf of Mexico Vermilion Snapper.
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FIGURE 8. Cumulative landings plots showing relative model performance between SARIMA model (red), GAM (blue), and GLM (green) forecasts with 95%

confidence limits (shaded areas) relative to observed cumulative landings (lb wet weight) for 2012, based on model fits to 1999–2011, 2004–2011, and 2007–

2011 time series data for Atlantic Red Porgy, Atlantic grunts complex, Gulf of Mexico Gray Snapper, and Gulf of Mexico Vermilion Snapper.
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possible. In this study, substitution of landings values for the

most recent year of fishing improved forecast accuracy over

replacement with zero values in most cases. For model projec-

tions to 2012, the SARIMA model forecast negative landings

rates in 2012 for Atlantic Red Porgy in wave 1 using all three

time series, and in wave 6 using the 1999–2011 and 2007–

2011 time series. Replacing these forecasts with the previous

year’s landings resulted in minor improvements in cumulative

total forecast accuracy (projected cumulative landings relative

to observed cumulative landings) compared with replacement

with zeroes (1999–2011: C6%, 2004–2011: C1%, 2007–

2011: C4% more accurate). Replacement of the wave 6 land-

ings for Gulf Vermilion Snapper in the 2007–2011 forecast

reduced forecast accuracy by 11% compared with substituting

zero values. The SARIMA model forecast negative landings

rates in 2012 for Gulf Gray Snapper in waves 1, 2, 5, and 6

using the 1999–2011 and 2004–2011 time series. Replacing

these forecasts with the previous year’s landings resulted in

major improvements in cumulative total forecast accuracy

compared with replacement with zeroes (1999–2011: C26%,

2004–2011: C42% more accurate). In summary, post hoc

replacement of negative SARIMA model values with landings

from the most recent year of fishing is recommended.

A strength of GAMs is the ability to fit noisy nonlinear

data; however, this flexibility can also permit overfitting of the

model to these data if careful model selection and validation

FIGURE 9. Radar plots showing relative model performance between the SARIMA model (solid line), GAM (dashed line), and GLM (dotted line) forecast

models with regards to model fitting (R2) to different time series lengths, mean error in model in the final year for model fits, and mean accuracy of model fore-

casts under “drop-one” fit scenarios for four recreationally exploited stocks.
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routines are not employed (Wood 2006). The GAMs provided

the best fit to the observed data in nearly all cases owing to the

additional flexibility of this model to accommodate noisy data.

However, their tendency to overfit, despite model selection

and validation, resulted in reduced forecasting performance in

comparison with SARIMA models and GLMs. While overfit-

ting can be addressed in GAMs (Zuur et al. 2010) by control-

ling the “wiggliness” of the smoothing function, this can be

quite arbitrary with small data sets. Alternatively, cross valida-

tion could be used, though the appropriateness of this approach

in the present study is doubtful given the size of the input data

sets.

As with any model, the reliability of our forecasts was

dependent upon both the accuracy and the consistency of the

historical data. Recreational fisheries data in the southeastern

United States is based upon surveys (i.e., SE Headboat Survey,

MRFSS, and the TPWD Creel Survey). Each of these surveys

contains uncertainty, and spikes in landings estimates may

occur when high landings rates from a limited subsample are

expanded. Survey data based upon dockside intercepts extrap-

olated to a fishing population comprising millions of people is

subject to variability, which may reflect sampling issues rather

than actual landings trends. Changes in survey methodologies

or management regulations may reduce the predictive utility

of historical data. Future forecasting modeling should attempt

to incorporate uncertainty in wave-specific recreational land-

ings estimates to avoid model overweighting of outliers that

may be an artifact of survey design. Additionally, the utility of

all of the methods explored in this study is contingent upon

the ability of historical trends to represent future landings.

Angler behavior is notoriously difficult to predict (Johnston

et al. 2010; Hunt et al. 2011), and changes in management

regulations (i.e., closed seasons, bag limits, size limits) within

or following the historical time series make forecasting future

recreational landings even more challenging. Future forecast-

ing modeling could explore the use of management regulation

time series as covariates, and also evaluate the utility of eco-

nomic predictors of recreational fishing effort such as per-cap-

ita U.S. Gross Domestic Product or mean fuel prices. Finally,

changes in stock size due to rebuilding may also pose a prob-

lem, as increasing landings rates may result in higher-than-

expected landings. When a stock assessment is available,

catchability may be combined with historical and projected

abundance at age to produce a time series of exploitable abun-

dance. Exploitable abundance may be a useful predictive

covariate for landings forecasting models (N. A. Farmer,

unpublished data).

CONCLUSIONS

Recreational landings comprise a substantial proportion of

the total landings for many fish species in the southeastern

United States, and this pattern is becoming more common

worldwide (Coleman et al. 2004; Cooke and Cowx 2004).

Coupled with more stringent fishery regulations, the need to

predict recreational fish landings will only increase. Although

GAM’s flexibility consistently provided the best fits to the

input data, the SARIMA model most often provided the best

fit to the final year in the time series, the most reliable forecast,

and the best track to the in-season cumulative landings curve.

Given that management agency resources are currently inade-

quate to develop stock assessments for all managed species

(Martell and Froese 2013), developing suites of semiauto-

mated approaches to understanding historical landings and

future patterns is essential. Our analysis suggests a simple

regression-based modeling approach that avoids overfitting

the input data can provide useful forecasts of the seasonal

dynamics and magnitude of future recreational landings.
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Appendix: Combinations of Single-Difference SARIMA Models

TABLE A.1. Seasonal (s) autoregressive integrated moving average (SAR-

IMA) (p,d,q)£(P,D,Q)s model combinations evaluated, where the autoregres-

sive component (p) represents the lingering effects of previous observations,

the integrated component (d) represents temporal trends, the moving average

component (q) represents lingering effects of previous random shocks (or

error), and s denotes the seasonal time step. As recreational landings are pri-

marily collected in 2-month waves, s was set to 6. A “1” denotes an active

component in the model.

ARIMA(p,d,q) £ (P,D,Q)s model

ARIMA(0,1,1) £ (0,1,1)s

ARIMA(1,0,0) £ (0,1,1)s

ARIMA(0,0,1) £ (0,1,1)s

ARIMA(0,1,1) £ (1,1,0)s

ARIMA(1,0,0) £ (1,1,0)s

ARIMA(0,0,1) £ (1,1,0)s

ARIMA(1,1,0) £ (0,1,1)s

ARIMA(1,1,0) £ (1,1,0)s
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