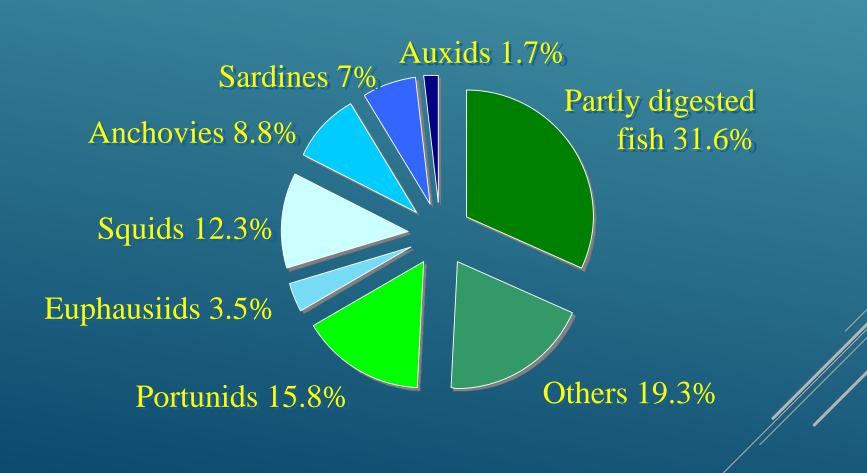


SAR Model Nicknames

- The Squid Model
- The Updated Fish Diets model
- The Who Eats Snappers/Groupers Model
- The Time Series Model
- The Most Articulated Ecopath Model for Fisheries Research
- The Model That Killed MSY

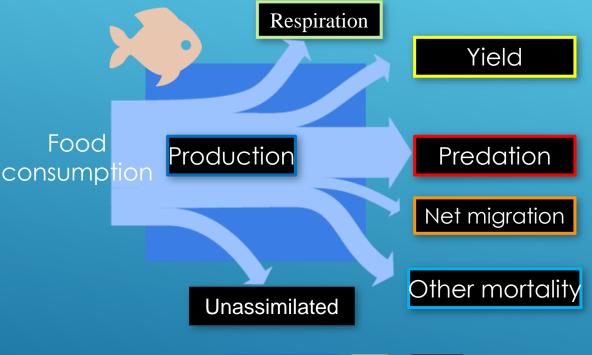
TALK OUTLINE


- Final assembly of the 143-box South Atlantic Region Ecopath model
- Examples of Explorations:
 - > Reconstructing past ecosystem change
 - > Red snapper and black sea bass interactions
 - Simulate varying fishing mortality on large coastal sharks and managed species response
 - Exploration of the ecosystem effects of MSY for all managed species

QUALITY DATA UNDERLYING THE SAR MODEL

Data	Contacts
Diets: Southeast Reef Fish Survey (SERFS): MARMAP/SEAMAP-SA/SEFISand other sources.	Tracey Smart, Kevin Spanik, Marcel Reichert
Diets: Refining diet matrix of the SAR model with Ecospecies data staff	Lauren Gentry, Kathleen Okeife
SERFS: MARMAP/SEAMAP-SA/SEFIS Abundance index data	Tracey Smart, Kevin Spanik, Marcel Reichert
SEAMAP-SA Coastal Trawl Survey biomass data	Tracey Smart, Kevin Spanik, Marcel Reichert
South Atlantic Commercial Landings 1995-2017	Julie Defilippi Simpson, Mike Rinaldi
Annual total biomass & catch from SA assessments (SEDAR)	Kevin Craig
Headboat recreational landings and Discards, SRHS_SA 1981- 2016	Kelly Fitzpatrick
Recreational, non-headboat, MRIP – Marine Recreational Program	Online queries by Tom and Lauren
Spatial data from various sources	Rua Mordecai and other contacts

Diet composition

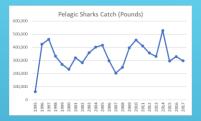

e.g., for a tuna

Use volume or weight!

INPUT PARAMETERS

Unexplained mortality

1-EE;


1.
$$\left(\frac{Q}{B}\right)_i \cdot B_i = \left(\frac{P}{B}\right)_i \cdot B_i + R_i + UN_i$$

2.
$$\left(\frac{P}{B}\right)_{i} \cdot B_{i} = \sum_{Pred_{j}=1}^{n} \left(\frac{Q}{B}\right)_{j} \cdot B_{j} \cdot DC_{ij} + E_{i} + Y_{i} + BA_{i} + \left(\frac{P}{B}\right)_{i} \cdot B_{i} \cdot (1 - EE_{i})$$

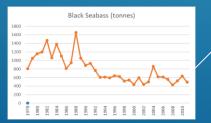
Balancing Temptation 1: Specify 1995-1998 Declines in Some Groups

Pelagic Sharks

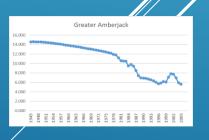
Catch

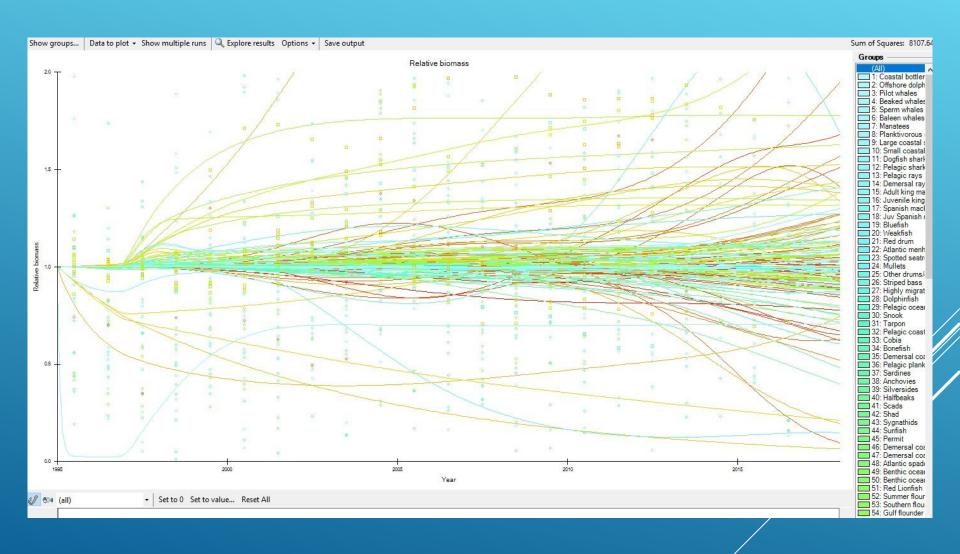
Bluefish


CPUE

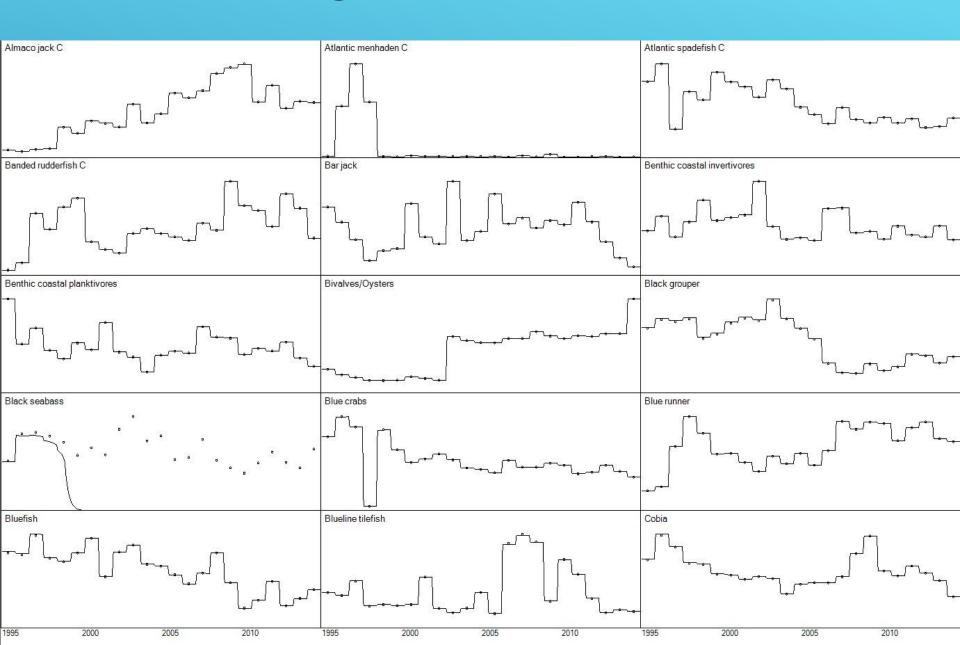

- Vermillion Snapper
- Red Snapper Biomass
- Other Jacks

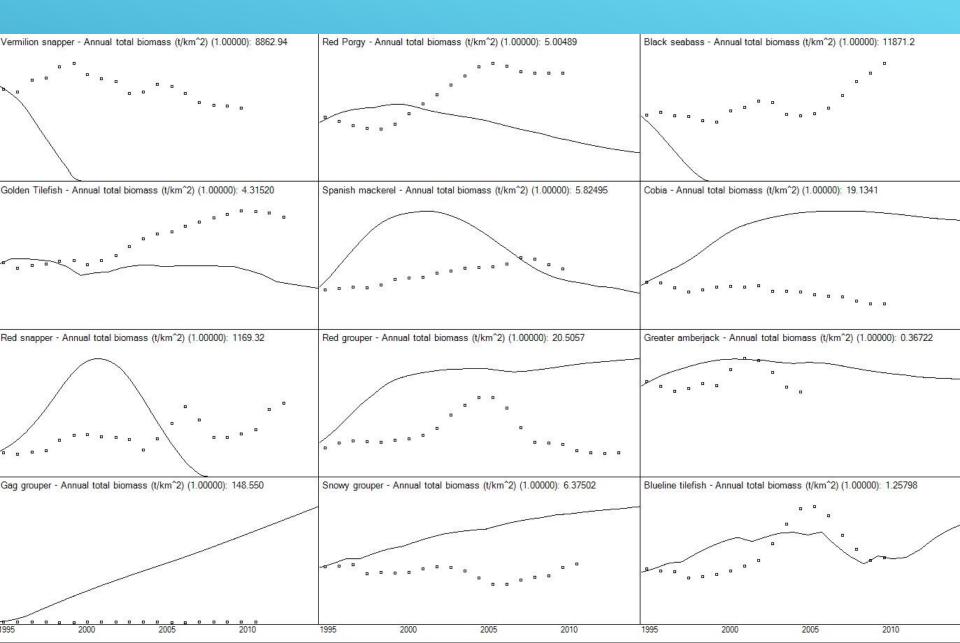
Black Seabass Biomass


Biomass


Biomass

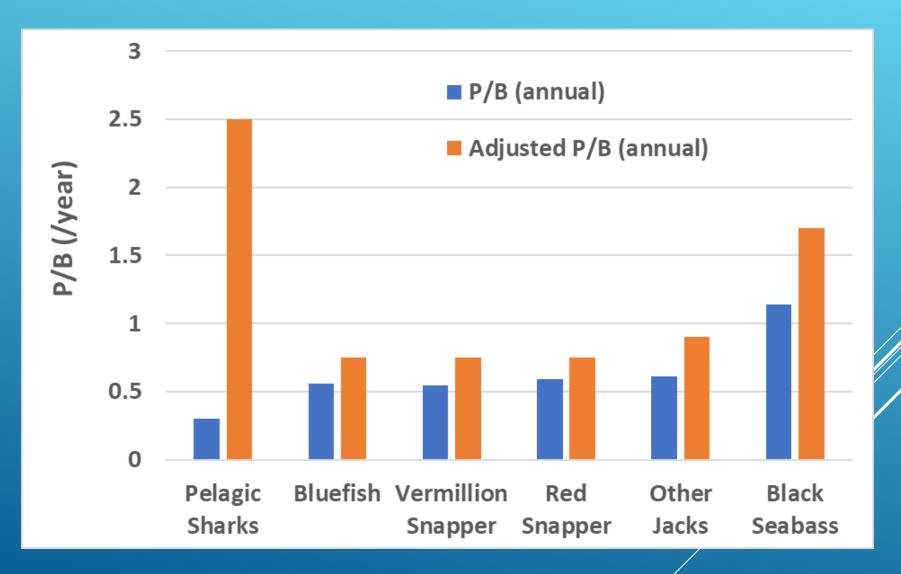
The Overall Effects of Specified Declines


Fit to Time Series: Vulnerability Search

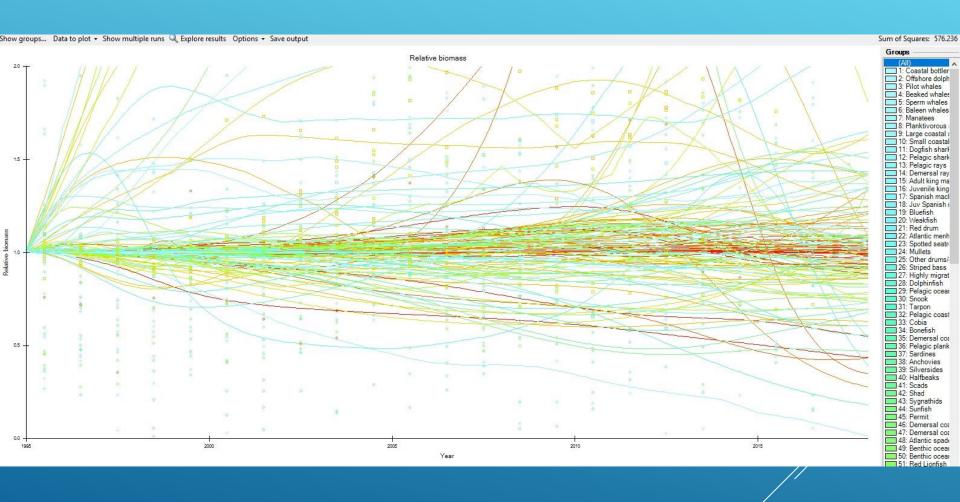

Finding Vulnerability Parameters

Estimate vulnerabilities	Set:														Apply																
Prey \ predator	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24 25	26	27	28	29	30	31	32
Coastal bottlenose dolphin								2.	13846																						
Offshore dolphins								2.	13846																						
Pilot whales																															
Beaked whales																															
Sperm whales																															
Baleen whales																															
Manatees																															
Planktivorous sharks																															
Large coastal sharks																															
Small coastal sharks									13846																						
Dogfish sharks					1.93648				13846		2.13846	1.34551		2.51509					1.34121												
Pelagic sharks									13846																						
Pelagic rays									13846																						
Demersal rays/skates								2.	13846		2.13846	1.34551																			
Adult king mackerel																										2.22111					
	1.93648								13846		2.13846	1.34551			2.39919																
Spanish mackerel								2.	13846																						
Juv Spanish mackerel											2.13846								1.34121												
Bluefish									13846			1.34551						2.39919			1.34121						2.22111				1.9464
Weakfish									13846		2.13846			2.51509									1.99635		1.9100	7			1.94641		1.9464
Red drum									13846			1.34551																	1.94641		
	1.93648		1.93648		1.93648	1.93648		2.	13846		2.13846	1.34551		2.51509	2.39919		2.39919		1.34121	1.34121	1.34121		1.99635		1.9100	7	2.22111		1.94641		1.946
Spotted seatrout		1.93648																													1.9464
	1.93648								13846					0.54500	2.39919					1.34121			1.99635		4.0400			0.00444		1.94641	
Other drums/croakers								2.	13846 2	13846	2.13846	1.34551		2.51509	2.39919	2.39919	2.39919		1.34121	1.34121	1.34121		1.99635		1.9100			2.22111	1.94641		1.9464
Striped bass																				1.34121			1.99635		1.9100						1.9464
Highly migratory pelagics												1.34551															2.22111				
Dolphinfish		1.93648		4 00040	1.93648	4.00040					0.400.40			0.54500	0.00040		0.00040		4.04404								2.22111				40.00
Pelagic oceanic piscivores		1.93648	1.93648	1.93648	1.93648	1.93648		2.	13846		2.13846			2.51509	2.39919		2.39919		1.34121							2.22111	2.22111			4.01014	1.9464
Snook																														1.94641	
Tarpon	1 00040			1.00040								1.04551					2 20010			1 04101						0.00111	2 22444			1.94641	
	1.93648			1.93648								1.34551					2.39919			1.34121						2.22111	2.22111				
Cobia												1.34551															2.22111				
Bonefish	1.93648	1.00040		1.00070	1.93648	1.00040			13846		2.13846			2.51509										1.070	18 1.9100	7		2.22111			
Demersal coastal piscivores Pelagic planktivores					1.93648			2.00000 2.				1 24551			2 20010	2 20010	2 20010	2 20010	1 2/121	1 2/121	1 24121				18 1.9100		2.22111				
	1.93648	1.33048			1.93648				13846 2	13040		1.34551	1.34551	2.51509		2.39919		2.33319		1.34121				1.978	10 1.5100	7	2.22111		1.94641		1.9464
		1 92640			1.93648					12046	2.13846			2 51500		2.39919		2 20010					1.99635	1 070	18 1.9100	7		2.22111			1.9464
			1.93648			1.93648			13846		2.13846	1.34001		2.01000		2.39919		2.33313	1.34121	1.34121			1.99635	1.370	1.9100		2.22111		1.34041		1.946
	1.93648	1.33040		1.93648		1.93648		2.	3040		2.13040					2.39919	2.33313			1.34121	1.34121		1.00000		1.5100		2.22111	2.22111			1.3404
	1.93648				1.93648											2.39919	2 39919		1.34121	1 34121							2.22111				1.9464
	1.93648				1.93648			2	13846		2.13846					2.39919	2.33313		1.34121	1.34121			1.99635				2.22111		1.94641		1.946
Sygnathids	1,33040			1.33040	1.33040	1.33040		2.			2.13846			2.51509	2.33313	2.33313				1.34121	1.34121		1.00000	1.978	19		2.22111		1.04041		1.040
Sunfish									2	13040	2.13040			2.01000							1.04121			1.370	10		2.22111				
Permit								2.	13846			1.34551				2.39919															
Demersal coastal invertivores				1.93648					13846		2.13846					2.39919	2 39919	2 39919	1 34121	1 34121	1 34121		1.99635	1.978	18				1.94641	1 94641	
Demersal coastal invertivores	1 93648			1.55046					13846 2			1.04001		2.51509		2.39919	2.30513	2.00010	1.07121	1.04121	1.34121		1.99635	1.574			2.22111		1.94641		1 946
Atlantic spadefish	.,00040								13846	.5040	2.10070			2.01000		2.00010					1.07121						2.22111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.040
Benthic oceanic piscivores		1.93648						2.	2040		2.13846			2.51509																	
Benthic oceanic invertivores		1.93648		1.93648							2.13846			2.51509					1.34121	1.34121				1 978	18 1.9100	7					
Red Lionfish														0.000																	
Summer flounder											2.13846			2.51509					1.34121		1.34121									1.94641	

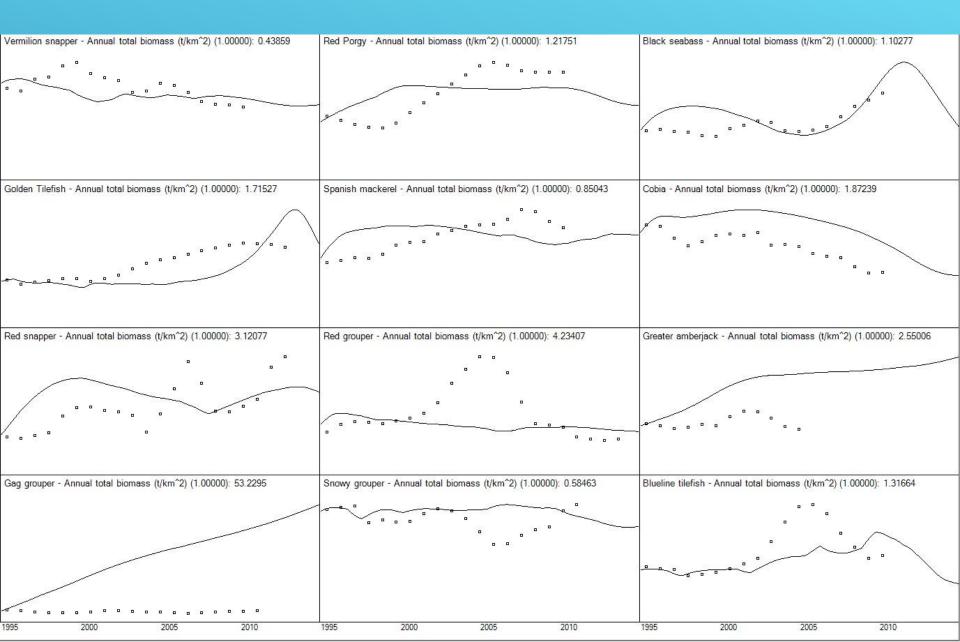
Forcing the Historical Catch

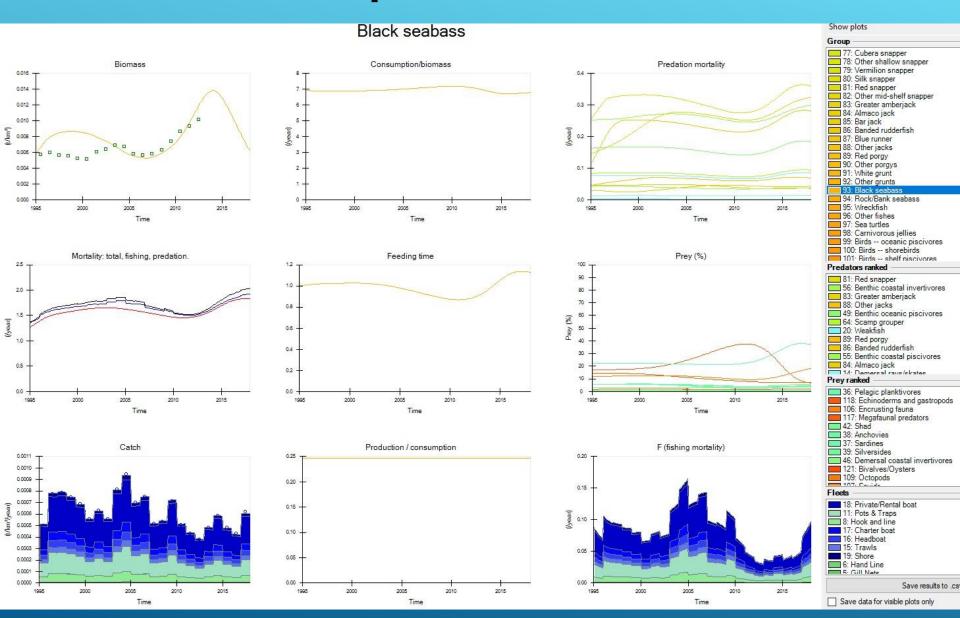


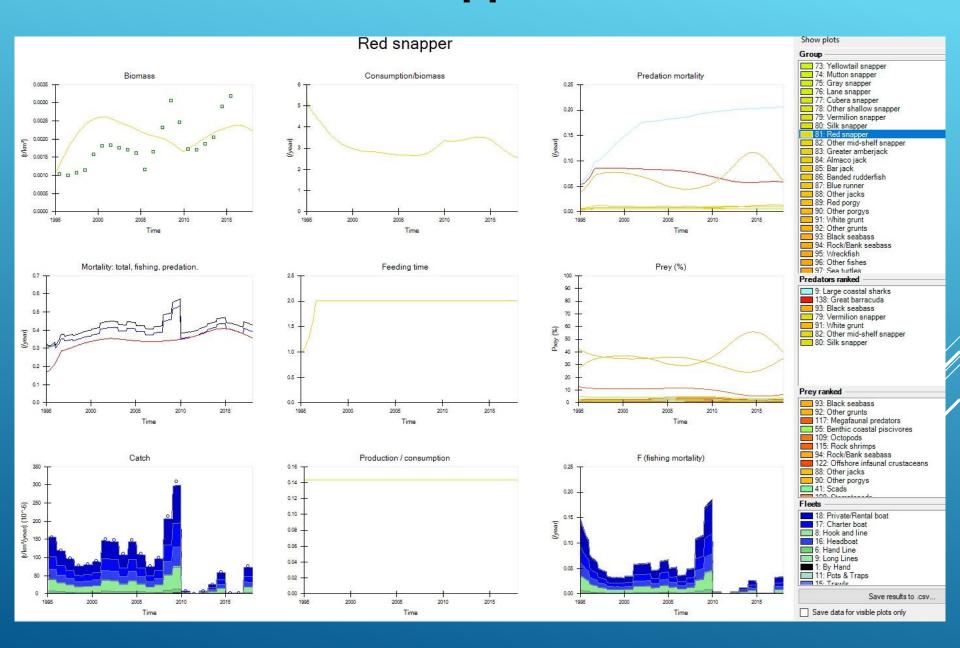
Fitting to Time Series (first try)

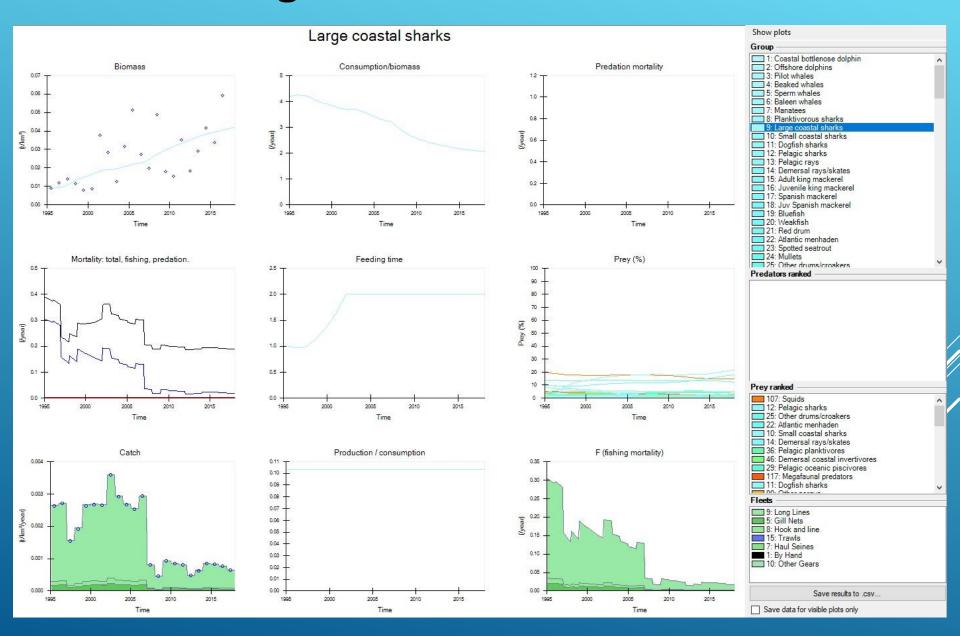


Balancing Temptation 2

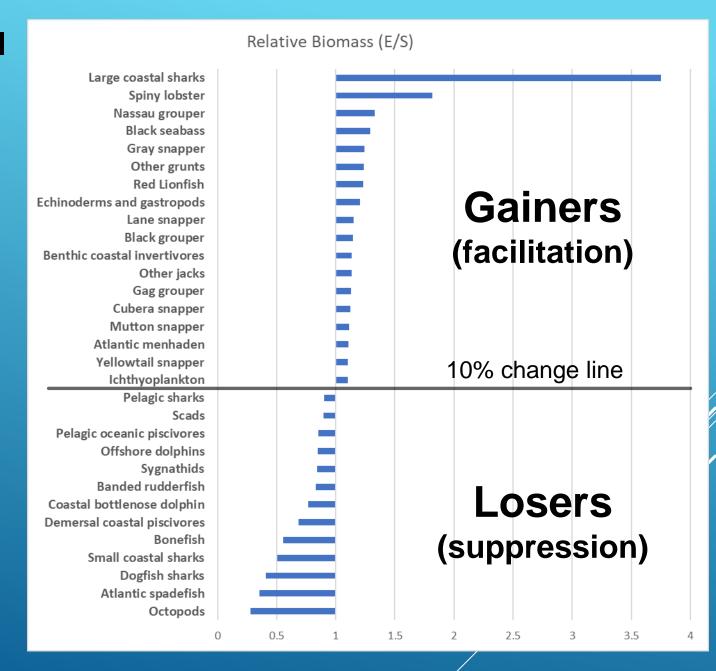

Increase Production Rates

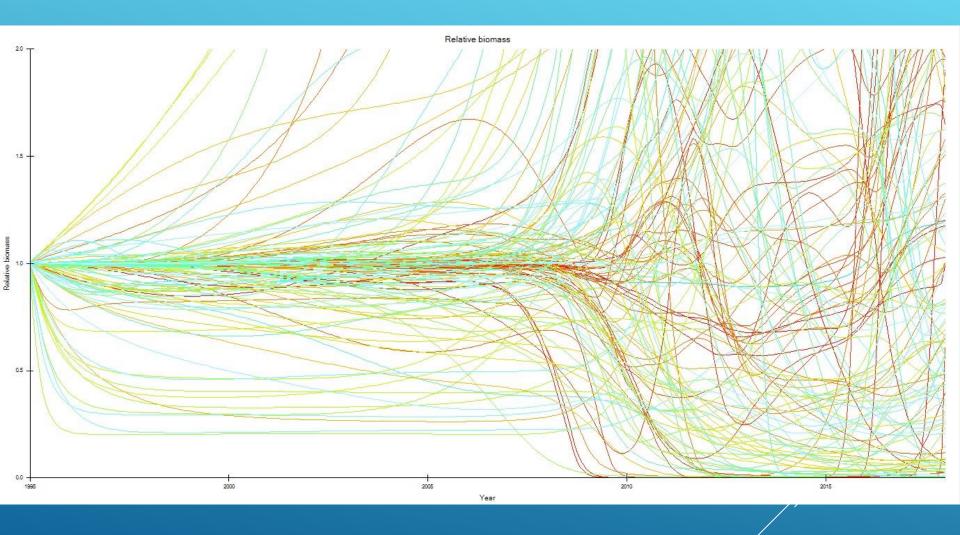

The Overall Effects of Elevated P/B Values


Fitting to Time Series (second try)


Ecosim Group Plots – Black Seabass

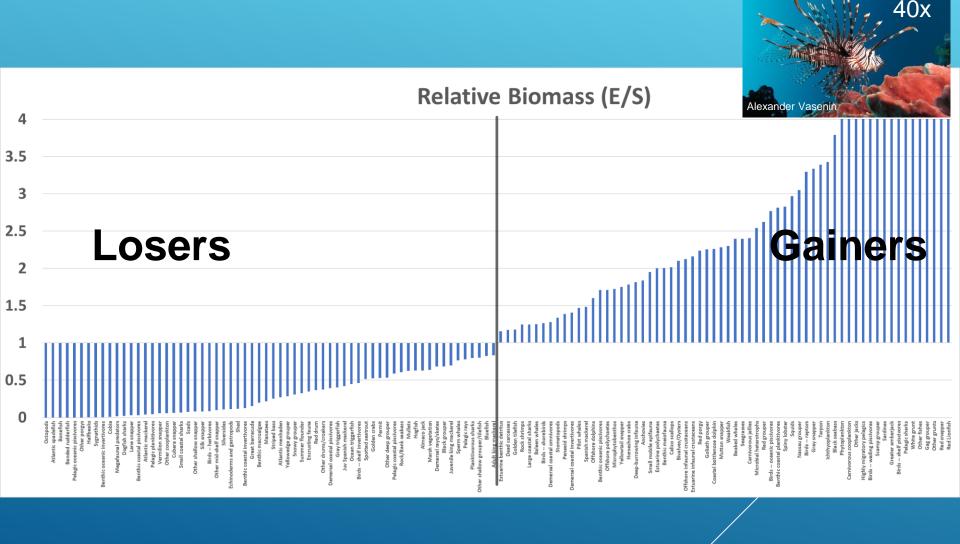
Red Snapper Plots


Large Coastal Sharks Plots

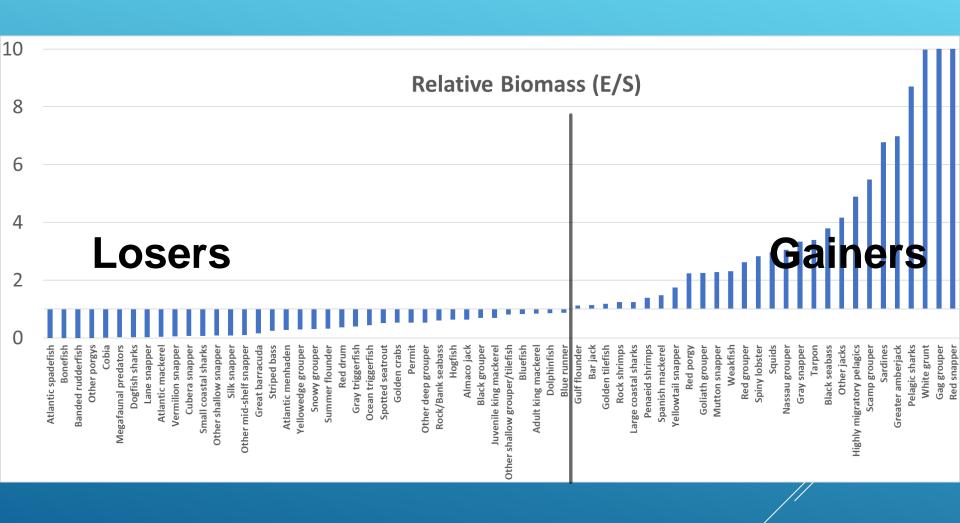

Large Coastal
Sharks Make
Black Seabass,
Snappers,
Groupers,
Lobster, etc.

(23-year simulation)

Is this a counterintuitive result?



MSY for all = Chaos



MSY for all captured species

Red lionfish (Pterois volitans)

MSY-ALL: Species of Interest

MSY-AII: Top 20 Losers and **Gainers** of **Biomass**

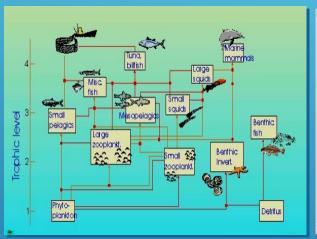
Biggest Losers	Biggest Gainers
Atlantic spadefish	Red snapper
Bonefish	Gag grouper
Banded rudderfish	White grunt
Other porgys	Pelagic sharks
Cobia	Greater amberjack
Megafaunal predators	Sardines
Dogfish sharks	Scamp grouper
Lane snapper	Highly migratory pelagics
Atlantic mackerel	Other jacks
Vermilion snapper	Black seabass
Cubera snapper	Tarpon
Small coastal sharks	Gray snapper
Other shallow snapper	Nassau grouper
Silk snapper	Squids
Other mid-shelf snapper	Spiny lobster
Great barracuda	Red grouper
Striped bass	Weakfish
Atlantic menhaden	Mutton snapper
Yellowedge grouper	Goliath grouper
Snowy grouper	Red porgy

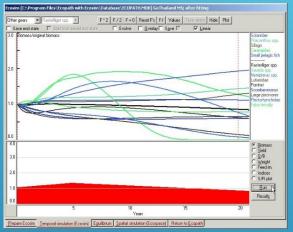
SUMMARY AND FUTURE DIRECTION

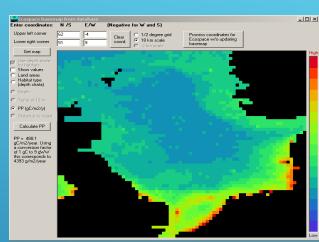
- First Phase (Ecopath) A snapshot of SA ecosystem - SAFMC species, relevant prey & predators, and the lower trophic levels.
 Continually refined.
- The Second Phase (Ecosim) Model is calibrated with quality time series of catch and biomass. Example simulations are presented, including some relevant "what-if" scenarios.
- The Third Phase (Ecospace) Spatiallyrelated questions can be addressed including spatial management and spatial expression of environmental change.

A PATH FORWARD

- Identify SSC members to participate on an Ecopath Model Subgroup composed of FWRI/SAFMC staff and members of modeling workgroup.
- Highlight SAFMC/FWRI strategy to collaboratively provide long-term repository for model inputs/outputs and a team approach to maintain and regularly run the models.


Tom Okey


Thomas.Okey@gmail.com



ECOPATH / ECOSIM / ECOSPACE

HISTORY OF THE SOUTH ATLANTIC MODEL

- 2001 Strawman 48-group model constructed
- 2004 Preliminary 98-group model developed
- 2014 Model refined to address forage fish questions (99 groups)
- > 2019 Model refinement to articulate managed species (143 boxes)

Sponsored by SAFMC

- 42-box Strawman
- 98-box Preliminary

2001 Volume 9 Number 4

Southeastern United States, Atlantic Shelf, Page 167

A PRELIMINARY ECOPATH MODEL OF THE ATLANTIC CONTINENTAL SHELF ADJACENT TO THE SOUTHEASTERN UNITED STATES

Thomas A. Okey¹ and Roger Pugliese²

'Fisheries Centre, University of British Columbia, 2204 Main Mall, V6T 1Z4, Vancouver BC Canada email: t.okey@fisheries.ubc.ca

South Atlantic Fishery Management Council, One Southpark Circle, Suite 206, Charleston SC 29407 USA

ABSTRACT

The biological communities of the Atlantic continental shelf adjacent to the southeastern United States are well known, but this knowledge is not integrated into a cohesive description of that region. We constructed a preliminary food web model of this area using Ecopath with Ecosim, as a way to initiate a long-term process of integrating this knowledge, learning more about the structure and resiliency of the system, and helping to guide research priorities in the future. The current model is considered to be a first iteration that can be used as a vehicle to stimulate a more rigorous refinement effort in the near future. The ecologically defined area covered by this model extends from Cape Hatteras, North Carolina to the easternmost extent of the Florida Kevs, and from the intertidal zone (or the entrance of estuarine systems) to the 500 m isobath. The time period characterized by this preliminary model is the four years from 1995 to 1998.

the Gulf Stream advect the underlying nutrient rich slope waters onto the shelf (Mallin et al. 2000).. This region as a whole supports a diverse assemblage of marine organisms, as it is somewhat of an ecological interface, or gradient, between warm-water and cold-water species assemblages. We refer the reader to Mallin et al. (2000) for a general description of the ecological setting, processes, and related research. A brief overview of special habitats is presented below.

Human activities along the east coast of the southeastern United States have influenced the adjacent continental shelf ecosystem for thousands of years, as native Americans conducted some limited artisanal fisheries and modified fire regimes and the vegetation in upland watersheds (e.g., Cronon, 1983). Modifications to the ecology of the continental shelf ecosystem accelerated soon after the arrival of Europeans, who began fishing coastal waters (e.g., Mowat, 1984; Reeves et al., 1999) in addition to introducing domesticated livestock, weed plants, disease, and new kinds of agriculture (e.g., Crosby, 1986).

Other profound anthropogenic modifications to this continental shelf occurred during the 20th century with the widespread use of powered fishing and whaling vessels, and coastal urbanization and industrialization. One particularly destructive type of fishing is bottom trawling, which destroys biogenic seafloor habitat in addition to simply removing fishes (Watling and Norse, 1998; Turner et al., 1990).

Trawling activity is intense in this area, and little doubt remains that these activities have considerably modified the continental shelf. The

Sponsored by Pew Charitable Trusts

99-box Forage model

Fisheries Centre

The University of British Columbia

Working Paper Series

Working Paper #2014 - 14

Exploring the Trophodynamic Signatures of Forage Species in the U.S. South Atlantic Bight Ecosystem to Maximize System-Wide Values

Thomas A. Okey, Andrés M. Cisneros-Montemayor, Roger Pugliese, Ussif R. Sumaila

Year: 2014

Email: thomas.okey@gmail.com

This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Early primary contributors

- Behzad Mahmoudi (FMRI)
- Bob Feller (USC)
- David Whitaker (SCDNR)
- Doug Vaughan (NMFS)
- Marty Levissen (SCDNR)
- Jack McGovern (NMFS)
- Larry DeLancey (SCDNR)
- Bill Sharp (FMRI)
- Whit Gibbons (UGA)
- Joan Browder (NMFS)
- John Carlson (NMFS)
- Larry Cahoon (UNC)
- Galen Johnson (UNC)

- Megan Gamble (ASMFC)
- Brad Spear (ASMFC)
- Toni Kearns (ASMFC)
- Peter Verity (SKIO)
- Wilson Laney (USFWS)

Early secondary contributors

- Elizabeth Wenner (SCDNR)
- Robert George (GIBS)
- Carolyn Currin (NOAA)
- Chuck Hunter (USFWS)
- Craig Watson (USFWS)
- Damon Gannon (Mote Lab)
- Desmond Kahn (DEDNR)
- Enric Cortez (NMFS)
- George Sedberry (SCDNR)
- Greg McFall (GRNMS)
- Hans Paerl (UNC)
- Jennifer Wheaton (FMRI)
- Jenny Purcell (WWU)
- Jim Nance (NMFS)
- John Merriner (NOAA)
- Doug Forsell (USFWS)

- Jon Hare (NOAA)
- Jose Castro (Mote Lab)
- Ken Lindeman (ED)
- Mark Epstein (USFWS)
- Martin Posey (UNC)
- Paul Carlson (FMRI)
- Steve Ross (UNC)
- Buddy Powell (WT)
- Alan Bolten (UFL)
- Karen Bjorndal (UFL)
- Bob Noffsinger (USFWS)
- Sean McKenna (NCDENR)
- Pat Tester (NOAA)
- Lance Garrison (NMFS)
- Myra Brower (SEFMC)

