
SOUTH ATLANTIC FISHERY MANAGEMENT COUNCIL 4055 FABER PLACE DRIVE, SUITE 201

 TEL
 843/571-4366
 FAX
 843/769-4520

 Toll Free:
 1-866-SAFMC-10

 E-mail:
 safmc@safmc.net
 Web site:
 www.safmc.net

Duane Harris, Chairman David Cupka, Vice-Chairman Robert K. Mahood, Executive Director Gregg Waugh, Deputy Executive Director

POLICIES FOR THE PROTECTION OF SOUTH ATLANTIC ECOSYSTEMS FROM NON-NATIVE AND INVASIVE SPECIES

(May 2010)

8 Policy Context

1 2

3 4

5 6

7

15

9 This document establishes the policies of the South Atlantic Fishery Management Council (SAFMC) regarding protection of South Atlantic ecosystems from potential impacts associated with invasive species. The policies are designed to be consistent with the overall habitat protection policies of the SAFMC as formulated in the Habitat Plan (SAFMC 1998a) and adopted in the Comprehensive EFH Amendment (SAFMC 1998b) and the various Fishery

14 Management Plans (FMPs) of the Council.

16 The findings presented below assess potential impacts to the South Atlantic's ecosystems posed

17 by invasion of non-native species in offshore and coastal waters and the processes which could

18 place those resources at risk. In adhering to a precautionary approach to management, the

19 SAFMC establishes in this document policies and recommendations designed to avoid,

20 minimize, and offset potential impacts to South Atlantic ecosystems.21

According to Pimentel et al. (2000, 2005), the United States spends \$137 billion annually on

23 issues related to invasive species, including development of control strategies and removal as

24 well as loss of revenue. Research indicates that non-native organisms may compete with native

organisms, alter habitats (Mack et al. 2000; Kolar and Lodge 2001; Rahel 2002; Olden et al.

26 2004) and reduce biodiversity (Olden et al. 2004).

27

28 While the number of introduced non-native marine organisms is small compared to that of

terrestrial and freshwater species, introductions have accelerated in recent decades mainly due to

30 increase in coastal development and shipping (Morris & Whitfield 2009). According to the

United States Geological Survey (2009), more than 10468 marine or estuarine species have been

introduced in North Carolina (13), South Carolina (39), Georgia (10) and the Atlantic coast of
 Florida to Key West (78)Florida, the Caribbean and the Gulf of Mexico. Of these, the majority

comprises marine fishes (39%), with crustaceans and mollusks accounting for an additional 43%.

Invasions by marine fishes and invertebrates is considered highly significant, with the potential

to displace native species and impact community structure and biodiversity <u>of marine and</u>

37		ecosystems (e.g., Grozholz et al. 2000; Streftaris et al. 2005; Goren & Galil 2005;		
38	Dierking 2007; Albins & Hixon 2008; Rilov & Crooks 2009). Recently, it has been found that			
39	two exotic mangrove species, introduced at a botanical garden, have spread and pose a threat to			
40	<u>natural m</u>	angrove forests in south Florida (Fourqurean et al. 2010).		
41				
42				
43	The SAF	MC finds that:		
44				
45		vasive marine organisms have the potential to cause adverse impacts to a variety of		
46	ha	abitats across the shelf and to nearshore systems including:		
47				
48		exposed hardbottom (e.g. reefs and live bottom) in shallow and deep waters,		
49		submerged <u>and emergent</u> aquatic vegetation beds, and		
50	c)	spawning and nursery areas.		
51	2 0			
52		ertain offshore and nearshore ecosystems are particularly important to the long-term		
53		ability of commercial and recreational fisheries under SAFMC management, and are		
54	po	otentially threatened by invasive species, including:		
55 56	0)	coral, coral reef and live/hardbottom habitat;		
50 57) marine and estuarine waters;		
58		estuarine wetlands, including mangroves and marshes; and		
58 59		submerged aquatic vegetation.		
60	u)	submerged aquate vegetation.		
61	3 Pa	ortions of the South Atlantic ecosystem potentially affected by invasive species, both		
62		dividually and collectively, have been identified as EFH or EFH-HAPC by the		
63		AFMC. Potentially affected species and their EFH under federal management include		
64		SAFMC 1998b):		
65	,	,		
66	a)	many snapper and grouper species (live hardbottom from shore to 600 feet, and – for		
67		estuarine-dependent species (e.g., gag grouper and gray snapper) – unconsolidated		
68		bottoms and live hardbottoms to the 100 foot contour);		
69	b)	penaeid shrimp (offshore habitats used for spawning and growth to maturity, and		
70		waters connecting to inshore nursery areas);		
71	c)	coastal migratory pelagics (e.g., king mackerel, Spanish mackerel) (sandy shoals of		
72		capes and bars, barrier island ocean-side waters from the surf zone to the shelf break		
73		inshore of the Gulf Stream);		
74	d)	o corals of various types and associated organisms (on hard substrates in shallow,		
75		midshelf, and deep water);		
76	e)	muddy, silt bottoms from the subtidal to the shelf break, deepwater corals and		
77	-	associated communities; and		
78	f)			
79		Commerce (e.g., sharks: inlets and nearshore waters, including pupping and nursery		
80		grounds).		
81				

82	4.	Scientists have documented important habitat values for East coast Florida nearshore
83		hardbottom used by over 500 species of fishes and invertebrates, including juveniles of
84		many reef fishes. On the continental shelf off Georgia and South Carolina, 598 species
85		of invertebrates have been collected in trawls and dredge tows over hardbottom habitats,
86		and 845 unique invertebrate taxa were found in benthic suction and grab samples in the
87		same area (Wenner et al. 1984). Equivalent scientific work is just beginning in other
88		South Atlantic states, but life histories suggest that similar habitat use patterns will be
89		found.

- 5. Invasive marine species present an unacceptable risk to the biological integrity of South Atlantic ecosystems and must be addressed. Moreover, South Atlantic ecosystems, particularly those in Florida, have been shown to be vulnerable to the establishment of nonindigenous species: 61% of the 104 marine or estuarine species reported as having been introduced into the SAFMC area of jurisdiction are considered to be established there (USGS 2010).⁻
- <u>6.</u> The addition of invasive lionfish (*Pterois volitans* and *P. miles*) and, the nonindigenous orange cup coral (*Tubastraea coccinea*), and the invasive, bloom-forming macroalga Caulerpa brachypus, and cyanobacteria of the genus Lyngbya (Kuffner et al. 2005; Paul et al., 2005), along with existing coral reef stressors, could cause negative changes in coral reef ecosystems of the South Atlantic region.
- 7. The risk of transmission of viral diseases from introduced Asian tiger shrimp (*Penaeus monodon*) to native species of penaeid shrimp remains unknown, as does the source of their introduction.
- 8. Stakeholder opposition and uncertainty about potential ecological effects were major considerations in a decision by the USACOE and the states of Maryland and Virginia to reject the idea of using the Asian oyster *Crassostrea ariakensis* in aquaculture or in efforts to revive wild oyster populations in the Chesapeake Bay.
 - 6.9.

114 SAFMC Policies Addressing Invasive Species

116 The SAFMC establishes the following general policies related to invasive marine organisms:

- In instances where an invasive species belongs to a group of organisms included in the Fishery Management Unit (*i.e.*, stony corals), the species would need to be excluded from the FMU via a plan amendment (or an existing framework).
- The Council encourages NOAA Fisheries Habitat Conservation Division (HCD) to
 consider recommending removal of invasive species as a compensatory mitigation
 measure. When removal of an invasive species is proposed in designated EFH, EFH HAPCs or CHAPCs, the Council and HCD will work together to evaluate proposed
 removal techniques to ensure the method selected will avoid or minimize environmental
 damage. When removal of an invasive species occurs in designated EFH, EFH HAPCs or

Formatted: Indent: Left: 0.5", No bullets or numbering

128 129 130		CHAPCs, the Council would defer to HCD to recommend an appropriate removal method(s) that will avoid or minimize environmental damage.		
130 131 132 133 134 135 136 137	3.	The Council supports the availability of grant funding to promote research targeting invasive species including prevention of introductions, evaluation of impacts, expansion control and removal through existing partnerships (<i>i.e.</i> , SARP) and in cooperation with state and federal agencies including NOAA's Invasive Species Program, the National Invasive Species Council and the Gulf and South Atlantic Regional Panel on Aquatic Invasive Species.		
138 139 140 141	4.	The Council will recommend to the National Aquatic Nuisance Species Task Force, as appropriate, that management plans be developed for potentially invasive species in South Atlantic waters (this does not imply plans developed by the Council).		
142 143 144 145 146 147	5.	The Council encourages the development of novel gears (other than those prohibited by the Council, such as fish traps) that effectively remove invasive species and but do not compromise the integrity of South Atlantic habitats and ecosystems. The Council encourages consulting with appropriate law enforcement agencies to ensure compliance with existing regulations and to address possible enforceability challenges.		
148 149	<u>6.</u>	_The Council strongly supports integrating monitoring of invasive species into existing fishery-independent and dependent programs.		
150 151 152 153 154	6.	-The Council strongly suggests that permits for offshore placement of infrastructure for energy generation (e.g. oil platforms, windmills) include provisions for monitoring the settlement and dispersal of nonindigenous species on and among such structures and in potentially affected natural habitats.	•	Formatted: Indent: Left: 0.5", No bullets or numbering
155 156 157 158 159	<u>7.</u>	The Council supports programs to control invasive species' populations (<i>e.g.</i> lionfish) in areas of high ecological/economic importance. The Council supports harvest, eradication, and/or removal strategies that do not impact populations of managed species or their habitats.	4	Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"
160 161 162 163 164	<u>8.</u>	The Council recommends that, prior to consideration of approval, a scientifically rigorous risk assessment be conducted for any nonindigenous species being proposed for use in an aquaculture operation.	4	Formatted: Indent: Left: 0.5", No bullets or numbering
165 166	Threa	ts from Invasive Marine Organisms		
167 168 169	The S	AFMC finds the following to constitute potential threats to South Atlantic ecosystems:		
109 170 171 172 173	<u>1.</u>	In addition to lionfish, 37 species of non-native marine fish have been documented along Florida's Atlantic coast in the last decade. These species represent a "watchlist" of potential future invaders. It is thought that most of these species are aquarium trade releases, similar to lionfish.		

174	+	Formatted: Indent: Left: 0.5", No bullets or
175	2. Potential impacts of the invasion of Indo-Pacific lionfish (<i>Pterois volitans</i> and <i>P. miles</i>)	numbering
176	in South Atlantic waters include:	
177	a) reduction of forage fish biomass	Formatted
178	b) _, increase in algal growth due to herbivore removal by lionfish, and	
179	1.—competition with native reef fish.	 Formatted: Indent: Left: 0.75", No bullets or
180	c) cascading trophic impacts on economically important species under SAFMC	 numbering
181	management.	Formatted
182	d) competition with native species could hamper stock rebuilding efforts for the	
183	Snapper Grouper Complex	
184	e) impacts on commercial and recreational fisheries, the aquarium trade, and coastal	
185	tourism industry	
186	f) increase in frequency of envenomations of recreational swimmers, fishermen, and	
187	<u>divers</u>	
188	—	
189	2. Lionfish have been shown to impact community structure and biodiversity potentially	Formatted: No bullets or numbering
190	causing cascading trophic impacts on economically important species under SAFMC	
191	management.	
192		
193	•	 Formatted: Indent: Left: 0"
194	3. Lionfish competition with native species could hamper stock rebuilding efforts for the	Formatted: No bullets or numbering
195	Snapper Grouper Complex.	
196		
197	4.3. Socio economic impacts of the lionfish invasion could include impacts on	
198	commercial and recreational fisheries, the aquarium trade, and coastal tourism industry.	
199		
200	5. Lionfish interactions with humans will continue to increase as lionfish densities increase.	
201	The number of envenomations of recreational swimmers, fishermen, and divers is likely	
202	to increase.	
203		
204	4. The orange cup coral, <i>Tubastraea coccinea</i> , is a stony coral not native to the South	
205	Atlantic region.	
206	a) Artificial structures are the preferred habitat and <i>T. coccinea</i> is prolific on some	 Formatted
207	artificial structures in the Caribbean, Gulf of Mexico, and off Florida.	
208	6.b) While there have been no reports of orange cup coral on natural substrate	
209	in Florida, it has been observed in the northern Bahamas reefs and it may	
210	eventually colonize natural reef/hardbottom in the region.	
211		
212	7.5. While there have been no reports of orange cup coral on natural substrate in	
213	Florida, it has been observed in the northern Bahamas reefs and it may eventually	
214	colonize natural reef/hardbottom in the region.	
215		
216	8. Over 30 species of non native marine fish have been documented in South Florida waters	
217	in the last decade. These species represent a "watchlist" of potential future invaders. It is	
218	thought that these species are also aquarium trade releases, similar to lionfish.	
219	•	Formatted: Indent: Left: 0.5", No bullets or
		numbering

220 221 222 223	6. The invasive, bloom-forming macroalga <i>Caulerpa brachypus</i> and cyanobacteria of the genus <i>Lyngbya</i> directly overgrow reefs, are generally unpalatable to herbivorous fishes, and can also physically and chemically inhibit coral recruitment (Kuffner et al. 2006; Paul et al. 2005).	
224		
225	7. The increasing incidence of infestation of American eels by the introduced parasite	
226	Anguillicoloides crassus presents an increased threat to an already declining population	
227	of that fish in the southeastern US, where the nematode has been documented to have	
228	significant negative impacts (ASMFC 2000, 2008).	
229	<u>8.</u>	
230		
231		

Formatted: Indent: Left: 0.5", No bullets or numbering

232	
233	References
234	
235	Albins, M. A., M. A. Hixon. 2008. Invasive Indo-Pacific lionfish Pterois volitans reduce
236	recruitment of Atlantic coral-reef fishes. Marine Ecology Progress Series 367: 233–238.
237	
238	Atlantic States Marine Fisheries Commision. 2002. Interstate Fishery Management Plan for
239	American Eel. Fishery Management Report No. 36 of the ASMFC. 79 pp.
240	
241	Atlantic States Marine Fisheries Commission. 2008. Addendum II to the Fishery Management
242	<u>Plan for American Eel. 7 pp.</u>
243	
244	
245	Dierking, J. 2007. Effects of the introduced predatory fish Cephalopholis argus on native reef
246	fish populations in Hawaii. Ph.D. Dissertation. University of Hawaii at Manoa. 115 p.
247	
248	Fourqurean, J. W., T. J. Smith III, J. Possley, T. M. Collins, D. Lee, and S. Namoff. 2010. Are
249	mangroves in tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of
250	South Florida. Biological Invasions. DOI 10.1007/s10530-009-96608
251	http://www.springerlink.com/content/4x3j740724363778/fulltext.pdf
252	
253	
254	Goren, M., and B. S. Galil. 2005. A review of changes in fish assemblages of Levantine inland
255	and marine ecosystems following the introduction of non-native fishes. Journal of Applied
256	Ichthyology 21: 364-370.
257	
258	Grozholz, E. D., M. R. Gregory, C. A. Dean, K. A. Shirley, J. L. Maron, and P. G. Conners.
259	2000. The impacts of a nonindigenous marine predator in California Bay. Ecology 81:1206-
260	1224.
261	
262	Kolar, C. S. and D. M. Lodge. 2001. Progress in invasion biology: predicting invaders. Trends
263	in Ecology and Evolution 16: 199-204.
264	
265	Kuffner, I. B., L. J. Walters, M. A. Becerro, V. J. Paul, R. Ritson-Williams, and K. S. Beach.
266	2006. Inhibition of coral recruitment by macroalgae and cyanobacteria. Marine Ecology
267	Progress Series 323:107-117.
268	
269	Lapointe, B. E. and B. J. Bedford. 2010. Ecology and nutrition of invasive Caulerpa brachypus
270	f. parvifolia blooms on coral reefs off southeast Florida, U.S.A. Harmful Algae 9:1-12.
271	
272	
273	Mack, R.N., D. Simberloff, W. M., Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz. 2000.
274	Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological
275	Applications 16:2035-2054.
276	

277	Morris, J. A., Jr., J. L. Akins, A. Barse, D. Cerino, D. W. Freshwater, S. J. Green, R. C. Munoz,
278	C. Paris and P. E. Whitfield. 2009. Biology and ecology of the invasive lionfishes, Pterois
279	miles and P. volitans. Proceedings of the Gulf and Caribbean Fisheries Institute 29: 409-414.
280	
281	Morris, J. A., Jr., and J. L. Akins. 2009. Feeding ecology of invasive lionfish (<i>Pterois volitans</i>)
282	in the Bahamian archipelago. Environmental Biology of Fishes 86: 389-398.
283	
284	Morris, J. A., Jr., and P. E. Whitfield. 2009. Biology, Ecology, Control and Management of the
285	Invasive Indo-Pacific Lionfish: An Updated Integrated Assessment. NOAA Technical
286	Memorandum NOS NCCOS 99. 57 pp.
287	······································
288	Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas, and K. D. Fausch. 2004. Ecological
289	and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution
290	19: 18-24.
291	17. 10 21.
292	Paul, V.J., R.W. Thacker, K. Banks and S. Golubic. 2005. Benthic cyanobacterial bloom impacts
293	the reefs of South Florida (Broward County). Coral Reefs 24: 693-697.
294	the reers of South Fronda (Broward County). Cofar Reers 24. 075 071.
295	Pimentel, D., L. Lach, R. Zuniga, and D. Morrison. 2000. Environmental and economic costs
296	associated with nonindigenous species in the United States. Bioscience 50: 53-65.
297	associated with nonindigenous species in the Onited States. Disselence 50, 55-05.
298	Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic
298	costs associated with alien-invasive species in the United States. Ecological Economics 52:
	· · ·
300 301	273-288.
302	Rahel, F. J. 2002. Homogenization of freshwater faunas. Annual Reviews of Ecological
302	
	Systems 33: 291-315.
304	Dilar C. and J. A. Carala. 2000. Distantial Investment in Maxima Economican. Ecological
305	Rilov, G., and J. A. Crooks. 2009. Biological Invasions in Marine Ecosystems – Ecological,
306	Management, and Geographic Perspectives. Springer-Verlag, Berlin. 641 pp.
307	
308	Cabadial D. I. A. Marria Ir and I. Alian 2000. Eight and to marriadic another marries
309	Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field guide to nonindigenous marine
310	fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. 210 pp.
311	
312	South Atlantic Fishery Management Council (SAFMC). 1998a. Final Habitat Plan for the South
313	Atlantic region: Essential Fish Habitat Requirements for Fishery Management Plans of the
314	South Atlantic Fishery Management Council. South Atlantic Fishery Management Council,
315	1 Southpark Circle, Suite 306, Charleston, SC 29407-4699. 457 pp. plus appendices.
316	
317	South Atlantic Fishery Management Council (SAFMC). 1998b. Final Comprehensive
318	Amendment Addressing Essential Fish Habitat in Fishery Management Plans of the South
319	Atlantic Region. Including a Final Environmental Impact Statement /Supplemental
320	Environmental Impact Statement, Initial Regulatory Flexibility Analysis, Regulatory Impact
321	Review, and Social Impact Assessment /Fishery Impact Statement. South Atlantic Fishery
322	Management Council, 1 Southpark Circle, Suite 306, Charleston, SC 29407-4699. 136pp.

324 325	Streftaris, N., A. Zenetos, and E. Papathanassiou. 2005. Globalisation in marine ecosystems: the story of nonindigenous marine species across European seas. Oceanography and Marine
326	Biology, An Annual Review 43: 319-453.
327	
328	United States Geological Survey Nonindigenous Aquatic Invasive Species Database (USGS-
329	NAS). 2009. Gainesville, FL. http://nas.er.usgs.gov
330	
331	Wenner, E. L., P. Hinde, D. M. Knott, and R. F. Van Dolah. 1984. A temporal and spatial study
332	of invertebrate communities associated with hard-bottom habitats in the South Atlantic Bight.
333	NOAA Technical Report NMES 18, 104 pp