

Update on the Dolphin Management Strategy Evaluation

Dolphin Wahoo AP April 2025

Not Conserve and Manage

Acknowledgements

Stakeholder Science Team:

<u>SEFSC</u>: Mandy Karnauskas, Matt McPherson, Suzana Blake, Cassidy Peterson <u>SAFMC</u>: Julia Byrd, John Hadley <u>SERO</u>: Nikhil Mehta <u>Beyond Our Shores Foundation</u>: Wess Merten <u>Avangrid</u>: Lela Schlenker

MSE Modeling Technical Team:

<u>Blue Matter Science</u>: Tom Carruthers, Adrian Hordyk, Quang Huynh <u>SEFSC</u>: Matt Damiano, Kyle Shertzer, John Walter, Cassidy Peterson <u>NCSU</u>: Jie Cao

Stakeholder participants

Management Strategy Evaluation (MSE)

Management Strategy Evaluation (MSE) – process designed to develop management procedures (MPs) that are robust to uncertainty

- Identify fishery-specific, stakeholder-defined management objectives
- 2. Identify relevant uncertainties over which management procedure should be robust
- **3**. Develop operating models, 'true' states of nature, and condition operating models
- 4. Identify management procedures that are responsive to stock dynamics (feedback loop)
- 5. Simulation exercise; summarize and present resulting performance statistics

Dolphin MSE

<u>Purpose</u>: to develop an *empirical management procedure* for dolphin in the US Atlantic that is:

- Fully-specified 'recipe' for setting OFL/ABC/ACL along with additional management actions
- Simulation tested to be robust to uncertainty
- Meets stakeholder-defined management objectives

Management Procedure

With our management procedures, we want to:

- 1. predict the amount of dolphin the SAFMC will have each year
- 2. maximize the usage of those fish across sectors and region

Tactical management exploration

<u>Proposed action plan for Amendment 3*</u> <u>scoping</u>:

Use MSE framework to explore static management actions:

- expanded / revised size limits
- recreational bag limits
- recreational vessel limits

Regulatory Amendment 3 to the Fishery Management Plan for the Dolphin and Wahoo Fishery of the Atlantic

* https://safmc.net/documents/dw_a2_regam-3decisiondocument_202412-pdf-2/

Project Update

MSE Modeling Dynamics

Blue Matter Science onboarded July 2024

Modeling Dynamics

- openMSE-based framework (openMSE.com)
- Quarterly time-step; statistical catch-at-length operating model; spatial dynamics
- Technical details in preparation

Specifications for MSE Trials for Atlantic Dolphinfish

Performance metrics, operating models, management procedures and diagnostics (v0.1) Tom Carruthers (tom@bluematterscience.com) 2025-01-15

Stakeholder Small Group Meetings

- 1. MSE 101
- 2. Management objectives
- 3. State of dolphin science
- 4. International dolphin fisheries
- 5. Operating models
- 6. Movement and distribution
- 7. Management approaches
- 8. Fishing valuation survey

Stakeholder Identified Uncertainties

- Removals (US recreational; International)
- Alternate movement patterns
- Enforcement challenges
- Changing availability & catchability
 - Biophysical (temp, Gulf Stream positioning, Sargassum)
 - Anthropogenic (ropeless lobster pots, offshore wind)
- Economic fishery drivers
- Post-release mortality & depredation

Proposed Scientific Uncertainties

- 1. Natural Mortality
- 2. Recruitment
- 3. Productivity / steepness
- 4. Spatial distribution
- 5. Movement
- 6. Uncertainty in removals
 - a. MRIP & International
- 7. Future nonstationary
 - a. Future recruitment
 - b. Distribution shifts
 - c. Changes in availability / catchability
 - d. Changes in life history parameters

Stakeholder-defined objectives

- Ensure opportunity / access to fishery
- Prevent fishery closures
- Large sizes preferred
- Stability in regulations (though mixed)
- Regional & sector differences in fishery goals and objectives
 - Improve consistency and reliability of fishery
 - Area-based TACs or pay-back measures
 - Conserve stock vs. high landings
 - No size limits vs. open to size limits

beter bay limit =1

REC VS for- hire

Thead boats / person

Bag limits

Proposed Conceptual Management Objectives

Generic*:

- 1. Status
- 2. Yield
- 3. Stability

Dolphin relevant*:

- 1. Catch rate
- 2. Fishing effort / opportunity
- 3. Size of fish caught

Rank which objectives are most important to you

* Metrics calculated over short (2025-2034), medium (2035-2044), and long (2045-2055) time horizons

Operating model design

Stakeholder feedback	Modeling decision
regional fishery and stock dynamics; regionally specific management objectives	spatial operating model
seasonal availability	seasonal time-step
different fishery dynamics among sectors	multiple fleets for each sector and region
size-based management objectives; currently length-based management	Age-based operating model
perceived changes to fish movement and availability over time	time-varying movement
management objective to increase catch rates	calculation of fleet CPUE

 Page 14
 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service