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Materials and Methods 
 
Study design 
 
 We used a Pella-Tomlinson surplus production model (17) with a multiplicative 
temperature influence term to measure the influence of ocean warming on the productivity of 
235 marine fish and invertebrate stocks in the RAM Legacy Stock Assessment Database (19). 
We estimated the sea surface temperatures (SST) experienced by each stock by mapping the 
boundary of the stock (i.e., the spatial domain of the stock assessment) and calculating the 
mean annual SST within this boundary using the COBE SST dataset (18). To determine whether 
taxonomy (order or family), geography (FAO major fishing area or ecoregion), or stock 
assessment method structure the SST influences, we evaluated models with hierarchical SST 
influence based on each of these five groups. We used Akaike Information Criterion (AIC; (21)) 
to compare models and selected the model with the lowest AIC score as the “final” model. 
Next, we evaluated whether the final model SST influences were additionally determined by: 
(1) life history traits such as growth rate, maximum age, or depth preference; (2) behavioral 
traits such as reproductive guild, migratory habits, or spawning behavior; (3) stock 
characteristics such as trend in biomass or fishing pressure; and (4) thermal experience such as 
mean SST, SST trend, or latitude. Lastly, we used the final model to hindcast SST-dependent 
maximum sustainable yield from 1930-2010 over all stocks and among ecoregions. To ensure 
that the estimated distribution of SST influences was not due to chance alone, we compared 
the final model results to results from null models using simulated SST time series designed to 
decouple the observed SST and productivity time series. We also explored the sensitivity of our 
results to using the COBE SST dataset rather than the ERSST (53) or HadISST (54) datasets and 
to modeling SST influence as a random rather than fixed effect. 
 
 
1. Data collection 
 
1.1 Stock selection 
 

We analyzed the non-salmon stocks in the RAM Legacy Stock Assessment Database 
(RAMLDB v3.8; (19)) with time series of total biomass (metric tons) and catch or landings 
(metric tons; catch preferred) longer than 20 years after trimming years poorly informed by 
catch and survey data (Table S5). We identified stocks and years to trim by visually inspecting 
the (1) surplus production and stock-recruit relationships and (2) biomass, recruitment, and 
catch time series for all candidate RAMLDB stocks (Appendix A). Stocks exhibiting smooth 
surplus production or stock-recruit relationships over the entire time series were excluded from 
the analysis. Years, largely at the beginning of the time series, exhibiting flat or smooth biomass 
or recruitment or perfectly linear catch were excluded from the analysis. Most stocks assessed 
using biomass dynamics models (largely tuna and marlin stocks) were excluded from the 
analysis because their dynamics were strongly driven by an assumed production function. 
However, we included 30 stocks assessed using biomass dynamics models that were visually 
judged to exhibit enough process variability for consideration in the analysis. Finally, we 



excluded 28 stocks that prevented model convergence because they either (1) lacked periods of 
low exploitation and high biomass necessary to constrain carrying capacity or (2) exhibited 
population dynamics wildly divergent from stationary logistic population growth (Appendix B). 
The resulting 235 stocks represent a variety of taxa (213 bony fish, 15 crabs/shrimps/lobsters, 4 
bivalves, 2 squids, 1 ray), life histories, and locations and approximately 33% of reported global 
catch (28 of 86 million metric tons in 2000; (1)). 
 
1.2 Stock boundary delineation and SST time series 
 

We estimated the sea surface temperatures (SST) experienced by each stock by 
mapping the boundary of the stock (i.e., the spatial domain of the stock assessment) and 
calculating the mean annual SST within this boundary using the COBE SST dataset (COBE v2; 
(18)). The COBE dataset provides monthly SST on a globally complete 1qx1q grid from 1850-
present based on an interpolation of in-situ and satellite-derived SST observations. We 
conducted sensitivity analyses using the ERSST (53) and HadISST (54) datasets to ensure that 
the results were not sensitive to the choice of SST dataset (Fig. S1; Appendix C). Stock 
boundaries were delineated by either (1) merging the statistical/management areas used to 
define the assessment area; (2) digitizing the assessment area directly from the stock 
assessment; or (3) clipping the managing country’s exclusive economic zone or the managing 
agency’s area of competence to the geographical reference points provided in the stock 
assessment. In the USA and Australia, we used information on the geographic distribution of 
each species (i.e., essential fish habitat and modelled distribution, respectively) to further 
constrain stock boundaries. 
 
 
2. Modeling 
 
2.1 Overview 
 
 We modeled temperature-dependent fisheries productivity in five stages. First, we 
modeled productivity without a temperature effect and used this “standard” model as a 
benchmark for parameterizing and evaluating models with a temperature effect. Second, we 
extended the standard model to include a multiplicative temperature influence term and used 
this model to evaluate whether temperature influences fisheries productivity. Third, we added 
hierarchical structure to the temperature term to test whether taxonomy, geography, or stock 
assessment method determines temperature influences. Fourth, we developed simulated 
temperature time series to confirm that our results were not an artifact of model structure. 
Finally, we evaluated how our results and conclusions would change if the temperature 
influences were modeled as fixed rather than random effects. We also detail how our attempt 
to model dome-shaped temperature dependence by estimating an additional thermal optima 
parameter proved impossible because of insufficient contrast in the temperature data. 
 
2.2 Standard surplus production model 
 



We modeled fisheries productivity using a Pella-Tomlinson surplus production model 
(17) with first-order autocorrelation in the residuals. Observed surplus production was 
calculated for each stock as the net change in total biomass in the absence of harvest: 
 

𝑆𝑃𝑖,𝑡 = 𝐵𝑖,𝑡+1 − 𝐵𝑖,𝑡 + 𝐶𝑖,𝑡                                                      Eq. 1 
 
where SPi,t is the surplus production for stock i over year t, Bi,t and Bi,t+1 are the biomasses of 
stock i in years t and t+1, respectively, and Ci,t is the catch for stock i removed between years t 
and t+1. By including the observed catch in the net change in biomass, surplus production 
accounts for the effect of fisheries removals on population growth (or decline). We used a 
Pella-Tomlinson model (17) because it contains a shape parameter (p) that allows it to replicate 
either the Fox (p→0) or Schaefer (p=1) production models (55, 56): 
 

𝑆𝑃𝑖,𝑡 = 𝑟𝑖
𝑝

𝐵𝑖,𝑡 (1 − (𝐵𝑖,𝑡
𝐾𝑖

)
𝑝

) + 𝜀𝑖,𝑡                                              Eq. 2 

 
where ri is the intrinsic rate of growth for stock i, Ki is the carrying capacity for stock i, and 𝜀𝑖,𝑡 is 
the residual for stock i in year t. Residuals are assumed to follow a first-order autocorrelated 
(AR1) process: 
 

𝜀𝑖,𝑡 = 𝜌𝑖𝜀𝑖,𝑡−1 + √1 − 𝜌𝑖
2𝛿𝑖,𝑡                                                   Eq. 3 

 
where 𝜌𝑖  is the first-order autocorrelation coefficient for stock i, 𝜀𝑖,𝑡 and 𝜀𝑖,𝑡−1 are the observed 
residuals around the production function for stock i in years t and t-1, respectively, and 𝛿𝑖,𝑡 is a 
normally distributed random variable representing uncorrelated errors for stock i in year t. We 
do not correct for the lower variance arising for 𝜀𝑖,𝑡 in the first year of data, and instead 
preclude doing so by estimating 𝜌𝑖  with unbounded support. 
 

We used Akaike Information Criterion (AIC; (21)) to compare models with shape 
parameters (p) that maximize productivity at 50% (p=1.00), 45% (p=0.55), 40% (p=0.20), and 
37% (p=0.01) of carrying capacity and selected the model with the lowest AIC score as the best 
“standard” model. We evaluated these shape parameter values because 50% produces the 
symmetric Schaefer model, 40% is the meta-analytic mean for fish (57), and 37% is the 
asymptotic limit of this parameterization of the Pella-Tomlinson model. 

 
In this model and in all the models described below, we (1) scaled biomass and 

production to each stock's maximum biomass to ease model fitting and (2) placed a likelihood 
penalty on carrying capacities greater than five times the observed maximum biomass to 
constrain unrealistic values. We fit all models using maximum likelihood estimation in the TMB 
package (Template Model Builder; (58)) in R (59). See Table S6 for a key to all model symbols. 
 
2.3 Base SST-linked surplus production model 
 



To evaluate the influence of temperature on fisheries productivity, we extended the 
best standard model to include a multiplicative temperature influence term:  
 

𝑆𝑃𝑖,𝑡 = 𝑟𝑖
𝑝

𝐵𝑖,𝑡 (1 − (𝐵𝑖,𝑡
𝐾𝑖

)
𝑝

) ∗ exp(𝑆𝑆𝑇𝑖,𝑡 ∗ 𝜃𝑖) + 𝜀𝑖                             Eq. 4 

 
where SSTi,t is the sea surface temperature for stock i in year t (centered on the mean SST for 
stock i to ease both model fitting and interpretation of the 𝜃𝑖 parameter) and 𝜃𝑖 is the influence 
of SST on the productivity of stock i. We estimated SST influences, 𝜃𝑖, as random effects: 
 

𝜃𝑖 ~ 𝑁(𝜇𝑆𝑆𝑇, 𝜎𝑆𝑆𝑇
2 )                                                           Eq. 5 

 
where PSST and VSST are the mean and standard deviation of the global distribution of SST 
influences (𝜃𝑖), respectively. 𝜃𝑖 < 0 means increasing SST reduces productivity at a given 
biomass and 𝜃𝑖 > 0 means increasing SST magnifies productivity at a given biomass. 
 

We used AIC to compare models using SST averages from the COBE, ERSST, and HadISST 
datasets and selected the model with the lowest AIC score as the best “base” model. 
 
2.4 Hierarchical SST-linked surplus production models 
 

To determine whether taxonomy, geography, or stock assessment method structure SST 
influences, we used SST-linked surplus production models with hierarchical SST influence based 
on each of five groups in three categories (Table S1): (a) taxonomy (order and family); (b) 
geography (FAO major fishing area and marine ecoregion); and (c) stock assessment method 
(Table S7). Marine ecoregions were defined by intersecting Large Marine Ecosystems (LMEs; 
(60)) and High Seas Areas (HSAs; (61)). These models were identical to the base model except 
that SST influence was estimated as a nested hierarchical random effect: 
 

𝜃𝑖,𝑗 ~ 𝑁(𝜇𝐺,𝑗, 𝜎𝐺
2)                                                             Eq. 6 

 
where SST influences (𝜃𝑖) for stock i in group j were drawn from a normal distribution with a 
group-specific mean (𝜇𝐺,𝑗) and group-level standard deviation (𝜎𝐺). Group-specific means were 
drawn from a global normal distribution with mean (𝜇𝑆𝑆𝑇) and standard deviation (𝜎𝑆𝑆𝑇): 
 

𝜇𝐺,𝑗 ~ 𝑁(𝜇𝑆𝑆𝑇, 𝜎𝑆𝑆𝑇
2 )                                                          Eq. 7 

 
We compared the group models to the base model using AIC and judged a group to be a 

significant driver of SST influence if its model exhibited an AIC score more than two points 
lower than the base model. The best or “final” SST-linked surplus production model was 
identified as the model producing the lowest AIC score.  
 
2.5 Model validation 
 



We tested whether the final SST-linked surplus production model described population 
dynamics better than the standard surplus production model by competing the models using 
AIC. We tested whether the results of the final model were an artifact of model structure by 
decoupling the SST and productivity time series using three null models with different 
simulated SST time series exhibiting: (1) the same mean, variance, autoregressive properties, 
and trend as the original time series; (2) the same mean, variance, and autoregressive 
properties as the original time series but without a trend; and (3) the same mean and variance 
as the original time series but without autocorrelation or a trend (Fig. S6; Appendix D). The SST 
simulations were performed using the R package forecast (62). The null models were first 
evaluated using the true final model, which estimates first-order (AR1) autocorrelation in the 
residuals; however, with a weakened SST-productivity link and an AR1 process that explains a 
significant portion of the variability in production, the SST influences were estimated to be near 
zero and non-significant in all three null model scenarios. To weaken the strength of the AR1 
process and better quantify the probability of measuring a significant SST influence by chance, 
we fixed the AR1 correlation coefficient to zero in all of the null models presented here. 
 
2.6 Fixed effects sensitivity analysis 
 
 There are compelling arguments for estimating the influence of SST on productivity as 
either a fixed or random effect. On one hand, estimating SST influence as a fixed effect imposes 
no constraints on the magnitude and distribution of the influences and could more accurately 
identify influences that deviate from the patterns exhibited by other stocks in the dataset. On 
the other hand, estimating SST influence as a random effect could constrain poorly informed 
and unrealistically large influences. Thus, we evaluated the sensitivity of our results and 
conclusions to modeling SST influence as a random versus fixed effect. The fixed effects model 
was identical to the model described by Eq. 4 except that SST influence was estimated as a fixed 
effect. To measure the extent to which choice of modeling framework affects the results, we 
compared: (1) the distribution and magnitude of SST influences; (2) the importance of 
exploitation history, maximum age, and temperature trend in determining the influence of SST 
on productivity; and (3) the hindcast changes in MSY overall and among marine ecoregions.  
 
 The SST influences estimated by the random and fixed effects models were in high 
agreement on the direction of the influence and were generally correlated in magnitude (Fig. 
S9); however, and as expected, the fixed effects model estimated larger SST influences for 
many stocks and estimated SST influences at a higher rate of significance than the random 
effects model (Figs. S9 & S10). The fixed effects model estimated absolute SST influences 
greater than 2.0 for eight stocks (Fig. S11), one of which appears accurate (e.g., Barents Sea 
capelin) while the others appear spurious. The drivers of SST influence estimates were 
consistent between the two models: (1) chronic overfishing increases the likelihood of negative 
impacts of warming on productivity; (2) faster-lived fish are more sensitive, positively and 
negatively, to warming than slower-lived fish; and (3) the position of a population within its 
species-specific thermal niche determines its response to warming (Fig. S12). However, the 
large SST influences estimated by the fixed effects model significantly changed the magnitude 
of the SST-driven losses in MSY from 1930-2010. The fixed effects model documented a 21.5% 



decline in MSY while the random effects model documented a 3.0% decline (Fig. S13). Hindcasts 
of ecoregion-scale changes in MSY were in high agreement on the direction of change and were 
generally correlated in magnitude (Fig. S14). However, the changes documented by the fixed 
effects model were larger than the random effects model with a few large departures, 
especially in the negative direction (Fig. S14). 
 
 We favored the random effects model because it improved estimates of SST influence 
for information-poor stocks, which exert considerable influence on hindcasts of SST-dependent 
MSY when estimated as fixed effects. The true loss in MSY of the evaluated stocks likely lies 
between 4.1% (final random effects model) and 21.5% (fixed effects model).  
 
2.7 Dome-shaped temperature dependence  
 

We attempted to fit two SST-linked surplus production models with dome-shaped 
temperature dependence – i.e., productivity increases as temperatures warm towards some 
thermal optimum but decreases once temperatures exceed this optimum – but were unable to 
achieve convergence with either model. The models attempt to estimate stock-specific (Eq. 8) 
and species-specific (Eq. 9) thermal optima, respectively: 
 

𝑆𝑃𝑖,𝑡 = 𝑟𝑖
𝑝

𝐵𝑖,𝑡 (1 − (𝐵𝑖,𝑡
𝐾𝑖

)
𝑝

) ∗ exp(−(𝑆𝑆𝑇𝑖,𝑡 − 𝑧𝑖)2 ∗ 𝜃𝑖) + 𝜀𝑖,𝑡                          Eq. 8 

 

𝑆𝑃𝑖,𝑡 = 𝑟𝑖
𝑝

𝐵𝑖,𝑡 (1 − (𝐵𝑖,𝑡
𝐾𝑖

)
𝑝

) ∗ exp(−(𝑆𝑆𝑇𝑖,𝑡 − 𝑧𝑗)2 ∗ 𝜃𝑖) + 𝜀𝑖,𝑡                          Eq. 9 

 
where SPi,t, Bi,t, SSTi,t, ri, Ki, p, and 𝜀𝑖,𝑡 are the same as in the SST-linked surplus production 
model with monotonic SST influence (Eq. 4), zi and zj are the thermal optima for stock i and 
species j, respectively, and 𝜃𝑖, the SST influence is constrained to be larger than zero (i.e., to 
ensure that the dome is concave down). Species-specific thermal optima do not allow local 
adaptation by stocks within a species but increase sample size and estimation power. We 
suspect that the models failed to converge because the time series are too short (39.3 yr mean) 
and lack sufficient SST contrast (1.6qC breadth mean) to estimate thermal optima (Fig. S15). 
 
 
3. Data analysis 
 
3.1 Drivers of temperature influence 
 

Because the influence of SST on productivity was estimated as a random effect, our 
estimates of SST influence cannot be considered independent and cannot undergo post-hoc 
analyses using formal statistical methods (i.e., formal hypothesis testing requires including 
explanatory variables inside the model, as we did with taxonomy and geography). Therefore, 
we graphically evaluated whether SST influence is determined by: (1) life history traits such as 
growth rate, maximum age, or depth preference; (2) behavioral traits such as reproductive 



guild, migratory habits, or spawning behavior; (3) stock characteristics such as trend in biomass 
or fishing pressure; and (4) thermal experience such as mean SST, SST trend, or latitude. A list of 
evaluated explanatory variables and their sources is provided in Table S3. We could not include 
these drivers inside the model, as we did with taxonomy and geography, due to missing data 
for many of the evaluated explanatory variables (Table S3). 
 
3.2 Hindcasting maximum sustainable yield 

 
We used the final model’s estimates of p, ri, Ki, and 𝜃𝑖 to hindcast SST-dependent 

maximum sustainable yield (MSY) from 1930-2010 (Appendices E-G). We expanded the 
equation for MSY from the Pella-Tomlinson surplus production model: 
 

𝑀𝑆𝑌 = 𝑟∗𝑘
(𝑝+1)(𝑝+1) 𝑝⁄                                                          Eq. 10 

 
to include the SST influence term and calculated MSY for stock i in year t as: 
 

𝑀𝑆𝑌𝑖,𝑡 =
[(exp(�̂�𝑖∗𝑆𝑆𝑇̅̅ ̅̅ ̅𝑖,𝑡)∗𝑟𝑖]𝑖∗𝑘𝑖

(𝑝+1)(𝑝+1) 𝑝⁄                                                 Eq. 11 

 
where 𝑆𝑆𝑇̅̅ ̅̅ �̅�,𝑡 is SSTi,t centered on the mean of the SST data used in model fitting and 𝜃𝑖 is 
randomly drawn from a multivariate normal distribution described by the mean 𝜃𝑖 estimate and 
the 𝜃𝑖 covariance matrix. We bootstrapped 10,000 MSY hindcasts for each stock to generate 
median MSY trends and confidence intervals. We assessed changes in MSY over the hindcast 
period using (1) Thiel-Sen regression slopes and (2) percent change in mean MSY from 1930-39 
to 2001-2010. Theil-Sen regression, a form of robust regression, identifies the median slope of 
lines through all possible point pairs and is insensitive to outliers and endpoints in short time 
series. We limited the hindcast from 1930-2010 to minimize the extrapolation of MSY 
predictions to temperatures cooler or warmer than those used in model fitting (Fig. S24) and 
explored the sensitivity of measures of MSY change to the selection of hindcast window (Fig. 
S25). 
 
3.3 Extrapolating vulnerability of global fish populations 
 
 We identified global fish populations in the FAO landings database (1) that are likely to 
be vulnerable to ocean warming as populations that (1) are overfished; (2) have experienced 
warming; and (3) are located at the warm end of their species-specific thermal niche. 
 

We analyzed the 1,740 FAO fish stocks (FAO area-country-species triples) meeting the 
following criteria: marine wild capture fisheries for finfish and invertebrates with taxonomic 
identification resolved to the species-level and with catch time series ≥20 yrs and ≥250 mt of 
median annual catch after trimming years of zero catch from the beginning of the time series. 
We excluded: (1) stocks of invertebrate species that frequently lack the life history data 
required for the catch-only stock assessment model used to determine stock status (e.g., 



barnacles, corals, sea cucumbers, sea urchins, starfish, sponges); (2) stocks of highly migratory 
species whose population dynamics cannot be described by catch within a single country’s 
exclusive economic zone (e.g., tuna, marlin, swordfish); and (3) stocks targeted by a distant 
water fleet whose catch time series are unlikely to be representative of total removals from 
that population (i.e., stocks whose FAO area and EEZ don’t overlap were excluded). 

 
We determined stock status using catch-MSY (63), the best performing individual catch-

only stock assessment method (64). Catch-MSY is a stock reduction analysis that reconstructs 
historical abundance by simulating biomass trajectories that could produce the observed catch 
time series given priors on initial and final year depletion and stock dynamics such as carrying 
capacity, K, and intrinsic growth rate, r. The method establishes priors for r based on population 
resilience (see below), K based on maximum catch (e.g., between Cmax and 100*Cmax), and initial 
and final year depletion based on the ratio of initial and final year catch to the maximum catch. 
It then estimates “viable” pairs of r and K (i.e., pairs that do not allow the stock to collapse or 
exceed carrying capacity), generates biomass trends for each pair, and estimates B/BMSY as the 
median trend. We calculated the mean B/BMSY of each population over the last 25 years (1991-
2015) and defined overfished as B/BMSY < 0.5. The model converged for 1530 of the 1740 
stocks. 

 
In addition to a catch time series, cMSY requires an estimate of population resilience 

(i.e., the ability of a population to recover from disturbance) to establish a prior for the intrinsic 
growth rate. We derived resilience estimates for all species using a combination of FishBase 
(65), SeaLifeBase (66), and FishLife (67) life history information. We used the rfishbase package 
(68) to download Von Bertalanffy growth parameters, maximum size, and vulnerability and 
resilience from FishBase (FB, for finfish) and SeaLifeBase (SLB, for invertebrates). We used the 
FishLife package to estimate the Von Bertalanffy growth parameters for all finfish species. 
FishLife uses a multivariate model trained on FishBase to predict eight life history traits for 
>32,000 fish. We classified species into resilience categories (Table S8) using, in order of 
preference, resilience values: (1) reported on FB/SLB; (2) derived from the FishLife Von 
Bertalanffy growth parameter; (3) derived from the FB/SLB Von Bertalanffy growth parameter; 
(4) derived from the FB/SLB vulnerability metric; (5) derived from the FB/SLB Von Bertalanffy 
maximum age; (6) derived from the genus mode; or (7) derived from the family mode. 

 
We estimated the temperature experienced by each population using the COBE sea 

surface temperature dataset (18) and the spatial boundary of the population (i.e., the 
intersection of the FAO region and exclusive economic zone). We calculated the mean annual 
temperature and the trend in annual temperature over the last 25 years (1991-2015). We 
estimated the position of each population in its species-specific thermal niche as the percentile 
of the population’s mean temperature experience relative to the temperature experiences of 
other conspecific populations. We identified populations above the 80th percentile as being at 
the warm end of their species-specific thermal niche.  



Supplementary Text 
 
Stock assessment models and treating output as “data” 
 
Overview of the assessment model types included in our analysis 
 
 Stock assessments are population models that combine different sources of information 
(catch, relative abundance, and life history) to estimate population size and harvest rates over 
time, as well as the reference points used in management. Different assessment models are 
used based on the available data for a stock. The four categories of commonly used assessment 
model types in our analysis were (Table S7): biomass dynamic models (BDM), virtual population 
analyses (VPA), statistical-catch-at-age models (SCAA), and integrated analyses (IA).  
 

BDMs track changes in total biomass from one year to the next, ignoring size- or age-
structure in the population. Changes in biomass are due to the observed catch and estimated 
surplus production in a given year (assumed to be a function of biomass in that year). BDMs 
require annual estimates of total catch and relative abundance (CPUE, catch-per-unit-effort) to 
estimate the parameters controlling production and biomass over time.  

 
VPA and SCAA models, on the other hand, assume that population dynamics are age-

structured, with recruitment events producing different-sized cohorts in the population over 
time. VPAs use observed catch-at-age (assumed known without error) and an assumed natural 
mortality rate (M) to reconstruct historical cohort abundance using a backwards tuning 
procedure (tuned to available CPUE data), and total biomass each year is estimated using the 
estimated numerical abundance of each cohort in that year times an assumed weight-at-age. In 
contrast, SCAA models are forward projecting, and allow for catch data to be uncertain. Annual 
cohort sizes and other parameters are estimated statistically using maximum likelihood or 
Bayesian approaches and fit to the available catch-at-age and CPUE information. Total biomass 
is estimated using the estimated numerical abundance and an assumed weight-at-age. Like 
VPAs, SCAA models often use an assumed M (either fixed over time or ages, or both), although 
M can sometimes be an estimated parameter. 

 
IA is a general assessment approach that aims to incorporate all the available data in as 

raw a form as possible into a single analysis via joint likelihood functions (69). The vast majority 
of assessments classified as IA in Table S7 (49 of 57) use the age-based Stock-Synthesis program 
(70), and are analogous to SCAA models in how annual estimates of biomass are produced. A 
key distinction between these IA models and those labeled SCAA here is that many of the 
inputs assumed fixed in SCAA may be estimated within the IA model, accounting for uncertainty 
in these quantities (e.g., weight-at-age, ageing error in catch-at-age data, etc.).  
 
Problems with and recommendations for using stock assessment output as data  
 

Maunder and Punt (69) outline five problems with using model output as data: (1) loss 
of information when converting data to model output; (2) inconsistent assumptions between 



the meta-analysis model and stock assessment model; (3) challenges in identifying a statistical 
likelihood for model output when treated as data; (4) difficulties in representing precision of 
model output (i.e., due to covariance or non-normal distribution of model estimates); and (5) 
reduced ability to diagnose goodness of fit for the meta-analysis model. 
 

Thorson et al. (47) provide six recommendations for conducting fisheries meta-analyses: 
(R1) choose appropriate model complexity and sample size; (R2) use multiple lines of evidence 
to support a hypothesis or interpretation; (R3) consider alternative hypotheses; (R4) strive for 
single-stage meta-analysis; (R5) account for experimental, parametric, and functional 
variability; and (R6) identify the desired type(s) of inference and proceed accordingly. 
 

Brooks and Deroba (46) suggest that post-hoc analyses that use model output as data 
frequently fail to account for the assumptions, uncertainties, and biases of the original 
assessment models. They provide the following five recommendations: (R7) avoid using model 
output as data; (R8) collaborate with lead assessment scientists; (R9) conduct sensitivity 
analyses; (R10) use errors-in-variables methods; and (R11) use cross-validation methods. 
 
How we addressed these challenges 
 
 We mitigated the problems associated with using stock assessment output as data in 
fisheries meta-analyses by: (R1) using a simple model given our low sample size (235 time 
series); (R2) using multiple lines of evidence to corroborate our results including repeating the 
analysis with multiple SST datasets, parameterizations, modeling frameworks, and metrics of 
MSY change; (R6) clearly stating our intent to make global-, group- (e.g., family, ecoregion), and 
individual-scale (i.e., stock) inferences about the effect of SST on productivity. We also 
addressed the assumptions, uncertainties, and biases in using stock assessment output as data 
by trimming or removing time series produced with strict assumptions, removing trimmed 
assessments with short time series (<20 yr), using a mixed-effects model to share information 
between stocks and constrain poorly informed estimates, and explicitly examining the influence 
of assessment method on our results. The results were not affected by stock assessment 
method and were not sensitive to SST dataset, model parameterization, or metric of MSY 
change. Following (R1), we recommend that future region-specific studies validate our results 
using meta-analytic models that leverage the availability of higher resolution data at smaller 
spatial scales.  
 
 We were unable to: (R3) consider alternative environmental drivers of fisheries 
productivity given the lack of historic, globally complete data on environmental variables 
besides SST; (R4/R7) use a single-stage meta-analysis given the global-intent of our study and 
the lack of unprocessed data (i.e., survey data) at the global-scale; (R5/R10) incorporate 
reported measures of uncertainty given that this data is not included in the RAMLDB and not 
reported in a consistent manner in stock assessments; (R8) collaborate with lead assessment 
scientists for all 235 assessments represented in our study; (R9) conduct sensitivity analyses 
using alternative biomass estimates or confidence intervals for biomass estimates given that 
this data is not included in the RAMLDB and not reported in a consistent manner in stock 



assessments; or (R11) use cross-validation methods to quantify uncertainty since withholding a 
testing dataset truncates our already short time series (40 yr mean). We know of only one 
published meta-analysis that used a single-stage analysis to estimate stock-recruit relationships 
for multiple populations simultaneously (71) and this analysis involved fewer than ten species.    



 

Supplemental Figures 
 

 
 
Fig. S1. Mean global SST based on the COBE v2, ERSST v4, and HadISST v.1.1 datasets. Gray 
lines show monthly means and black lines show annual means. Horizontal dashed lines show 
mean ocean temperature from 1880-present. The discontinuity in the HadISST dataset in the 
1980s is likely due to problems at the poles and dateline and problems with the bias correction 
algorithms and compromises the usefulness of the dataset for our purposes.  



 

 
Fig. S2. Comparison of SST influence estimates from SST-linked surplus production models 
using the COBE v2, ERSST v4, and HadISST v1.1 datasets. In the top panels, points show mean 
estimates and error bars show 95% confidence intervals. Significant positive and negative SST 
influences are shown in blue and red, respectively. The shaded grey column indicates the 95% 
confidence interval for the global mean of the SST influences. In the bottom panels, the 
diagonal line is the one-to-one line for pairwise comparisons of SST influence estimates from 
models using each SST dataset.  



 

 
 
Fig. S3. Distribution of SST influences estimated by SST-linked surplus production models with 
hierarchy on SST influence. Hierarchical models are structured by (A) taxonomic order and (B) 
taxonomic family, (C) FAO major fishing area, (D) marine ecoregion, and (E) stock assessment 
method. Points show mean estimates and error bars show 95% confidence intervals. Significant 
positive and negative SST influences are shown in blue and red, respectively. The shaded grey 
column indicates the 95% confidence interval for the global mean of the SST influences.  



 

 
 
Fig. S4. Correlation between SST influences estimated by the base model and five hierarchical 
models. Hierarchical models are organized by taxonomy (order/family), geography (FAO 
area/marine ecoregion), or stock assessment method. Diagonal line is the one-to-one line.  



 

 
 
Fig. S5. Mean of the SST influence distributions for stock assessment methods in the SST-
linked surplus production model with hierarchy on SST influence by stock assessment 
method. Points show mean estimates and error bars show 95% confidence intervals. None of 
the SST influence means were significantly different from zero and the model gained less 
support than the base model (see Table S1).  



 

 
 
Fig. S6. Example (A) observed and (B-D) simulated SST time series (US West Coast, black 
rockfish). The simulated SST time series were used in the three null models.  



 

 
 
Fig. S7. Distribution of SST influences estimated by the final model and three null models. 
Points show mean estimates and error bars show 95% confidence intervals. Significant positive 
and negative SST influences are shown in blue and red, respectively.  



 

 
 
Fig. S8. Distribution of intrinsic rate of growth (ri), carrying capacity (Ki), SST influence (θi), 
residual process variability (σP,i), and first-order (AR1) autocorrelation coefficient (ρi) 
estimates from the final model. Points show mean estimates and lines show 95% confidence 
intervals. Carrying capacity is a multiple of the maximum observed biomass (e.g., a carrying 
capacity of 1, shown by the vertical dotted line, means that the carrying capacity is equivalent 
to the maximum observed biomass).  



 

 
 
Fig. S9.  Comparison of SST influences estimated by the fixed and random effects models. 
Plots show (A) correlation between the random and fixed effects estimates and histograms of 
the (B) random and (C) fixed effects estimates.  



 

 
 
Fig. S10. Distribution of SST influences estimated by the fixed and random effects models. 
Points show mean estimates and error bars show 95% confidence intervals. Significant positive 
and negative SST influences are shown in blue and red, respectively.  



 

 
 
Fig. S11. Inspection of the stocks exhibiting SST influence estimates greater than 2.0. Blue 
points represent cooler than average years and red points represent warmer than average 
years. Black lines show the surplus production curves at each stock’s average temperature. Blue 
and red lines show surplus production curves at temperatures progressively cooler and warmer 
than the average, respectively. Stocks with positive SST influences are more productive at 
warmer temperatures (red curves on top) and stocks with negative SST influences are more 
productive at cooler temperatures (blue curves on top). SST influences (θi) are shown in the 
top-left corner of each plot and are colored to indicate the direction and significance of the SST 
influence (blue=positive, red=negative, bold=significant).  



 

 
 
Fig. S12. SST influence as a function of (A) exploitation history, (B) maximum age, and (C) 
position of a population in its species-specific thermal niche. Panel (A) shows more and larger 
negative influences of warming for populations with histories of overfishing. Points represent 
individual populations and are colored by significance (blue=positive, red=negative, grey=non-
significant). Solid lines show the 50th percentile quantile regression fit and dashed lines show 
the 2.5% and 97.5% quantile regression fits. F/FMSY is the ratio of fishing mortality (F) to the 
fishing mortality that produces maximum sustainable yield (FMSY): values greater than one 
indicate overfishing. Panel (B) shows larger and more significant influences of temperature for 
populations of species with faster life histories (i.e., shorter lifespan). Points and lines as in 
Panel (A). Panel (C) shows increasingly negative influences for populations at the warm end of 
their thermal niche for the two species with ≥10 populations. Lines show Theil-Sen regression 
fits. Theil-Sen regression, a form of robust regression, identifies the median slope of lines 
through all possible point pairs and is insensitive to outliers and endpoints in small datasets.  



 

 
 
Fig. S13. Hindcast of SST-dependent maximum sustainable yield (MSY, mt=metric tons) using 
the fixed and random effects models. Solid lines indicate the median MSY estimates, shading 
indicates the 95% confidence intervals, and horizontal dashed lines indicate MSY at average 
temperature. Percent decline from 1930-39 to 2001-10 is shown in the top-right corner.  



 

 
 
Fig. S14. Percent change in mean maximum sustainable yield (MSY) from 1930-39 to 2001-10 
by ecoregion predicted by the fixed versus random effects models. Points are scaled to the 
MSY of the ecoregion and the number of stocks in the ecoregion is shown inside each point. 
The solid line indicates the one-to-one line.  



 

 
 
Fig. S15. Histograms showing (A) breadth of SST experience, (B) length of time series, and the 
(C) start and (D) end year of time series for stocks used in the analysis. Mean values are 
indicated by the vertical dashed line (median values shown for start and end years).  



 

 
 
Fig. S16. Map showing the global distribution of SST influences. Points were jittered to expose 
overlapping stock centroids. Dashed lines indicate FAO major fishing areas.  



 

 
 
Fig. S17. Mean of the SST influence distributions for geographic or taxonomic groups in 
models with hierarchy on SST influence. Hierarchical models are structured by (A) marine 
ecoregion, (B) FAO major fishing area, (C) taxonomic family, and (D) taxonomic order. Points 
show mean estimates and error bars show 95% confidence intervals. Significant positive and 
negative SST influences are shown in blue and red, respectively. All but the taxonomic order 
model had more support than the base model. 
  



 

 
 
Fig. S18. SST influence as a function of nine stock characteristics. SST influences are colored by 
significance (blue=positive, red=negative, grey=non-significant). Solid lines show the 50th 
percentile quantile regression fit and dashed lines show the 2.5% and 97.5% quantile regression 
fits. Sample size is shown in the bottom-right corner if data were not available for all 235 
stocks.  



 

 
 
Fig. S19. SST influence as a function of nine life history traits. Life history traits are the: Brody 
growth coefficient (K), asymptotic maximum length (Linf), asymptotic maximum weight (Winf), 
natural mortality (M), maximum age (Tmax), age at maturity (Tmat), length at maturity (Lmat), 
trophic level, and median depth. SST influences are colored by significance (blue=positive, 
red=negative, grey=non-significant). Solid lines show the 50th percentile quantile regression fit 
and dashed lines show the 2.5% and 97.5% quantile regression fits. Sample size is shown in the 
bottom-right corner if data were not available for all 235 stocks.  



 

 
 
Fig. S20. Distribution of SST influences among (A) specific and (B) generic habitat types. 
Brown and blue boxplot shading corresponds to demersal and pelagic habitats, respectively. 
Black numbers indicate total number of stocks for each habitat type. Blue and red numbers 
show the number of stocks with a positive and negative SST influence, respectively.  



 

 
 
Fig. S21. Distribution of SST influences among reproductive strategies and migratory and 
spawning behaviors. Grey numbers indicate total number of stocks in each group.  



 

 
 
Fig. S22. SST influence as a function of the mean temperature experienced by stocks of the 
same species for the seven species with ≥5 stocks in the analysis. Lines show Theil-Sen 
regression fits. Theil-Sen regression, a form of robust regression, identifies the median slope of 
lines through all possible point pairs and is insensitive to outliers and endpoints in small 
datasets.  



 

 
 
Fig. S23. SST influence as a function of the latitude of stocks of the same species for the seven 
species with ≥5 stocks in the analysis. Lines show Theil-Sen regression fits. Theil-Sen 
regression, a form of robust regression, identifies the median slope of lines through all possible 
point pairs and is insensitive to outliers and endpoints in small datasets.  



 

 
 
Fig. S24. The (A&B) frequency of SST extrapolation by the hindcast model and (C) correlation 
between MSY estimates from the final model and data-rich stock assessments. In (A), each 
row shows the SST experience of an individual stock where black years were used in model 
development, grey years experienced temperatures also experienced during model years, and 
blue and red years experienced temperatures cooler and warmer than those experienced 
during model years, respectively. In (B), the blue and red shading show the percentage of years 
experiencing temperatures cooler and warmer than those experienced during model years, 
respectively. The hindcast model generally extrapolates for fewer than 15% (dashed line) of 
years between 1930-2010. In (C), the diagonal line is the one-to-one line.  



 

 
 
Fig. S25. Sensitivity of hindcasted changes in MSY (mt=metric tons) to the determination of 
the hindcast window. Time series showing (A) mean global SST anomaly, (B) hindcast of SST-
dependent maximum sustainable yield (MSY) for all stocks included in the analysis, (C) Thiel-Sen 
regression slope when evaluating MSY trends beginning in each year from 1850-1990 and 
ending in 2010, and (D) percent difference in MSY when comparing the mean MSY over the 10 
years following each year from 1850-1990 and the mean MSY from 2001-2010. In (A), the grey 
shading indicates the hindcast window determined to minimize extrapolation to temperatures 
outside those included in the final model. In (B), the dark line shows a Thiel-Sen regression fit to 
the MSY time series in the hindcast window. In (C) and (D), the labeled points mark the 
measures of MSY change experienced over the hindcast window. 
 



 

 
 
Fig. S26. Ecoregion-scale trends in maximum sustainable yield (MSY) related to ecoregion (A) 
latitude, (B) mean temperature, and (C) temperature trend.  



 

 
 
Fig. S27. Comparison of ecoregion-scale changes in fisheries productivity estimated by Britten 
et al. (14) and the present study. Britten et al. (14) quantify the meta-analytic mean trend in 
recruitment potential (RMAX). Comparable values derived from the present study are: (A) change 
in scaled MSY (MSY divided by maximum MSY) per decade from 1930-2010; (B) percent 
difference in mean MSY from 1930-39 to 2001-2010; and (C) the meta-analytic mean of the SST 
influences of stocks in an ecoregion multiplied by the change in temperature from 1930-2010 in 
the ecoregion. In both studies, negative and positive values represent a negative and positive 
change, respectively. Blue and red points indicate ecoregions where both studies agree that 
change has positively and negatively impacted productivity, respectively. Grey points indicate 
ecoregions in which the studies disagree on the direction of productivity change. The present 
study describes SST influence for ten ecoregions not described in the Britten study (Bay of 
Biscay, Canary Current, Greenland Sea, Humboldt Current, Kuroshio Current, Labrador Sea, 
Mediterranean Sea, North Brazil Shelf, South Atlantic Ocean, and West Bering Sea) and the 
Britten study describes SST influence on one ecoregion not described in the present study (East-
Central Australian Shelf).  



 

Fig. S28. Distribution of FAO stocks included in the vulnerability analysis. Each stock is a FAO 
area-country-species triple.  



 

 
 
Fig. S29. Indicators of the vulnerability of populations to ocean warming. Points represent 
individual populations and are colored by the position of the population within its species-
specific thermal niche (deep blue=coolest end of range; deep red=warmest end of range). Deep 
red populations in the bottom-right quadrant have experienced warming (positive temperature 
trend), overfishing (B/BMSY < 0.5), and are located in the warm end of their thermal niche and 
are the most likely to be vulnerable to ocean warming.  



 

 
 
Fig. S30. Number and total catch of populations vulnerable to warming by country (FAO 
region-country exclusive economic zone intersect). Points are scaled and colored based on the 
total catch of vulnerable populations in each country and the number of vulnerable populations 
in each country is shown inside the point. Zeros indicate countries without any vulnerable 
populations. Dashed lines indicate FAO major fishing areas.  



 

 
Supplemental Tables 
 
Table S1. AIC of candidate surplus production models (PT=Pella-Tomlinson). 
 

  Model K Likelihood AIC ΔAIC 

Question 1. Does asymmetry matter?     
 PT model (MSY@45%K) (standard model) 940 -19280.4 -36680.9 0.0 

 Schaefer model (MSY@50%K) 940 -19278.9 -36677.8 3.1 

 PT model (MSY@40%K) 940 -19271.3 -36662.6 18.3 

 PT model (MSY@37%K) 940 -19261.1 -36642.1 38.8 

Question 2. Does temperature matter?     
 COBE SST-linked PT model (base model) 942 -19300.4 -36716.9 0.0 

 HadISST SST-linked PT model 942 -19290.5 -36697.0 19.9 

 ERSST SST-linked PT model 942 -19289.2 -36694.5 22.4 

 PT model (MSY@45%K) (standard model) 940 -19280.4 -36680.9 36.0 

Question 3. Does group hierarchy matter?     
 SST-linked PT model w/ hierarchy by ecoregion (final model) 943 -19312.0 -36738.0 0.0 

 SST-linked PT model w/ hierarchy by FAO area 943 -19309.3 -36732.7 5.3 

 SST-linked PT model w/ hierarchy by assessment method (specific) 943 -19306.4 -36726.7 11.3 

 SST-linked PT model w/ hierarchy by family 943 -19305.3 -36724.7 13.3 

 SST-linked PT model (base model) 942 -19300.4 -36716.9 21.1 

 SST-linked PT model w/ hierarchy by order 943 -19300.6 -36715.2 22.8 

 SST-linked PT model w/ hierarchy by assessment method (generic) 943 -19300.4 -36714.9 23.1 

Question 4. Null model tests     
 SST-linked PT model w/ hierarchy by LME (final model) 943 -19312.0 -36738.0 0.0 

 SST-linked PT model w/ hierarchy by LME - Null SST #2 943 -19285.1 -36684.1 53.8 

 SST-linked PT model w/ hierarchy by LME - Null SST #1 943 -19283.7 -36681.3 56.7 

 SST-linked PT model w/ hierarchy by LME - Null SST #3 943 -19280.5 -36674.9 63.0 
 



 

Table S2. Stocks whose productivity is significantly influenced by ocean warming (sorted from 
most positive to most negative temperature influence). 
 

Stock id Species Area θi 

GHAL4RST Greenland halibut (Reinhardtius hippoglossoides) Gulf of St. Lawrence 0.51 

COD3Pn4RS Atlantic cod (Gadus morhua) Northern Gulf of St. Lawrence 0.46 
HERR30 Atlantic herring (Clupea harengus) Bothnian Sea 0.42 
SCALLGB Sea scallop (Placopecten magellanicus) Georges Bank 0.40 

HERRRIGA Atlantic herring (Clupea harengus) Gulf of Riga East of Gotland 0.31 
PANDALGOM Northern shrimp (Pandalus borealis) Gulf of Maine 0.27 

WHAKEGBGOM White hake (Urophycis tenuis) Gulf of Maine / Georges Bank 0.24 
SPANMACKSATLC Spanish mackerel (Scomberomorus maculatus) Southern Atlantic coast 0.18 
BSBASSMATLC Black sea bass (Centropristis striata) Mid-Atlantic Coast 0.16 

KINGKLIPSA Kingklip (Genypterus capensis) South Africa -0.11 
ALBANATL Albacore tuna (Thunnus alalunga) Northern Atlantic -0.20 

ARFLOUNDBSAI Arrowtooth flounder (Atheresthes stomias) Bering Sea and Aleutian Islands -0.20 
PLAIC7d European Plaice (Pleuronectes platessa) Eastern English Channel -0.25 
SOLEIIIa Common sole (Solea solea) Kattegat and Skagerrak -0.27 

PLAICECHW European Plaice (Pleuronectes platessa) Western English Channel -0.28 
CODVIIek Atlantic cod (Gadus morhua) Celtic Sea -0.29 

HERRSIRS Atlantic herring (Clupea harengus) ICES VIIa-g-h-j -0.32 
HERRNS Atlantic herring (Clupea harengus) North Sea -0.33 
WHITNS-VIId Whiting (Merlangius merlangus) IV and VIId -0.35 

HADNS-IIIa Haddock (Melanogrammus aeglefinus) IIIa and North Sea -0.36 
POLLNS-VI-IIIa Saithe (Pollachius virens) IIIa, VI and North Sea -0.36 

SOLEIS Common sole (Solea solea) Irish Sea -0.39 
SEELNSSA1 Sand eel (Ammodytes marinus) North Sea -0.42 
CODNS Atlantic cod (Gadus morhua) North Sea -0.44 

CODVIa Atlantic cod (Gadus morhua) West of Scotland -0.45 
SEELNSSA2 Sand eel (Ammodytes marinus) North Sea -0.47 

SEELNSSA3 Sand eel (Ammodytes marinus) North Sea -0.50 
CODIS Atlantic cod (Gadus morhua) Irish Sea -0.54 

  



 

Table S3. Potential predictors of temperature influence and their sources (percentage of stocks 
with predictor available shown in parenthesis when coverage is incomplete). 
 

Variable Source 

SST experience  
SST average (°C) COBE SST + stock boundary database (1930-2010) 
SST trend (°C/yr) COBE SST + stock boundary database (1930-2010) 
Latitude (absolute value) Centroid of the stock area (stock boundary database) 

Stock characteristics  
Biomass average (MT) RAM Legacy Database 
Scaled biomass trend (scaled MT/yr) RAM Legacy Database 
Stock area (sq. km) Stock boundary database 
Time series length (year) RAM Legacy Database 
B/BMSY average RAM Legacy Database (52%) 
F/FMSY average RAM Legacy Database (57%) 

Geography  
Marine ecoregion Containing the centroid of the stock area 
FAO Major Fishing Area Containing the centroid of the stock area 

Life history traits  
Taxonomy (family/order) RAM Legacy Database (corrected for errors) 
Natural mortality rate (M, 1/yr) FishLife (finfish, 100%), SeaLifeBase (inverts, 19%) 
Brody growth coefficient (K) FishLife (finfish, 100%), SeaLifeBase (inverts, 100%) 

Asymptotic maximum length (Linf, cm) FishLife (finfish, 100%), SeaLifeBase (inverts, 38%) 
Asymptotic maximum mass (Winf, kg) FishLife (finfish, 100%), SeaLifeBase (inverts, 24%) 

Length at maturity (Lmat, cm) FishLife (finfish, 100%), SeaLifeBase (inverts, 0%) 
Age at maturity (Tmat, yr) FishLife (finfish, 100%), SeaLifeBase (inverts, 0%) 
Maximum age (Tmax, yr) FishLife (finfish, 100%), SeaLifeBase (inverts, 19%) 

Trophic level FishBase (finfish, 93%), SeaLifeBase (inverts, 19%) 
Habitat (e.g., demersal, pelagic, etc.) FishBase (finfish, 99%), SeaLifeBase (inverts, 95%) 

Depth (m) FishBase (finfish, 95%), SeaLifeBase (inverts, 0%) 
Behavioral traits  

Migratory behavior (e.g., catadromous, etc.) Fishbase (finfish, 69%), SeaLifeBase (inverts, 0%) 

Reproductive mode (i.e., dioecism or protogyny) Fishbase (finfish, 96%), SeaLifeBase (inverts, 95%) 
Reproductive guild 1 (e.g., bearers, guarders, etc.) Fishbase (finfish, 91%), SeaLifeBase (inverts, 71%) 

Reproductive guild 2 (e.g., nesters, brooders, etc.) Fishbase (finfish, 82%), SeaLifeBase (inverts, 67%) 
Spawning ground (e.g., coastal, shelf, etc.) Fishbase (finfish, 62%), SeaLifeBase (inverts, 0%) 
Spawning frequency Fishbase (finfish, 55%), SeaLifeBase (inverts, 5%) 

  



 

Table S4. Hindcasted changes in SST-dependent maximum sustainable yield (MSY) from 1930-2010 among ecoregions (LME=large 
marine ecosystem; HSA=high seas area; sorted by ascending percent difference). 
 

      Total MSY Mean SST trend SST MSY change 
Type Ecoregion # of stocks (1000s of mt) SST (°C) (°C / decade) influence (θi) mt / decade % difference 

LME Sea of Japan 1 30.9 12.3 0.134 -0.14 -1119.7 -34.7 
LME North Sea 9 2454.6 9.8 0.082 -0.36 -78384.5 -34.6 

LME Iberian Coastal 2 3.1 16.2 0.085 -0.14 -59.8 -19.2 
LME Kuroshio Current 6 3720.8 22.1 0.121 -0.15 -67403.0 -17.4 
LME Celtic-Biscay Shelf 15 294.0 12.5 0.064 -0.25 -3278.4 -15.2 

LME East China Sea 5 1907.5 21.5 0.142 -0.05 -17185.3 -8.3 
LME Benguela Current 3 176.6 19.6 0.079 -0.05 -1120.1 -6.0 

HSA South Atlantic Ocean 1 25.2 14.4 0.075 -0.07 -180.2 -5.3 
LME Southeast U.S. Continental Shelf 9 20.4 25.4 -0.115 0.09 -176.0 -5.0 
HSA North Atlantic Ocean 6 328.8 20.4 0.023 -0.11 -1440.5 -4.7 

LME Faroe Plateau 3 86.7 9.2 0.018 -0.07 48.2 -3.5 
LME Iceland Shelf and Sea 5 1261.0 4.6 0.031 -0.04 -554.0 -3.0 

LME Agulhas Current 5 761.2 25.0 0.076 -0.04 -2503.2 -3.0 
LME Gulf of Alaska 20 356.2 9.0 0.014 -0.01 -586.8 -2.1 
LME East Bering Sea 14 3297.4 4.7 0.038 -0.02 -5306.8 -2.1 

HSA Labrador Sea 2 138.5 4.2 0.042 -0.05 66.7 -2.0 
LME Greenland Sea 1 1029.3 1.1 0.031 -0.01 -108.1 -0.2 

LME Gulf of Mexico 3 2.0 25.9 0.000 0.01 -0.7 -0.2 
LME Humboldt Current 16 10178.6 15.1 0.077 -0.01 28.6 -0.2 
LME North Brazil Shelf 1 17.3 27.7 0.022 0.00 -1.1 -0.1 

LME California Current 29 286.5 16.5 0.034 0.02 -14.5 -0.1 
LME Patagonian Shelf 2 349.2 10.3 0.059 0.01 270.7 0.3 

LME Mediterranean Sea 2 40.1 19.7 0.025 0.01 11.3 0.6 
HSA Bay of Biscay 1 7.2 15.0 0.084 0.01 6.2 1.0 
LME Norwegian Sea 1 1262.7 6.8 0.040 0.01 614.4 1.1 



 

LME Barents Sea 5 2633.8 1.1 0.079 0.03 3967.5 1.7 

LME West Bering Sea 1 143.3 4.3 0.037 0.03 35.7 1.8 
LME Scotian Shelf 2 41.0 7.2 0.074 0.04 94.0 1.9 

HSA North Pacific Ocean 4 149.6 22.1 0.036 -0.01 304.4 2.0 
LME New Zealand Shelf 9 5.8 15.1 0.049 0.03 18.5 3.0 
LME Canary Current 2 712.9 21.0 0.066 0.04 2228.8 4.0 

HSA South Pacific Ocean 5 86.7 18.1 0.046 0.10 387.7 4.2 
LME South West Australian Shelf 5 2.8 17.0 0.074 0.07 16.2 4.2 

LME Southeast Australian Shelf 8 9.2 14.6 0.088 0.09 60.2 4.7 
LME Northeast U.S. Continental Shelf 15 878.0 11.5 0.064 0.20 4096.5 6.5 
HSA Indian Ocean 4 452.4 15.3 0.066 0.09 4374.6 7.3 

LME Baltic Sea 5 828.7 7.5 0.088 0.20 11597.4 11.2 
LME Labrador - Newfoundland 8 292.0 4.5 0.017 0.33 2802.3 14.2 

  



 

Table S5. RAM Legacy Database stocks used in analysis (TB = total biomass). 
 
Condition # of stocks 

All RAMLDB stocks 1058 

Not Pacific salmon stocks 685 

Only stocks with TB/catch in metric tons 350 

Only stocks with TB/catch time series ≥ 20 years 300 

Removed 23 stocks with strong SP/SR relationships 277 

Removed 9 stocks without 20 years of data after trimming 268 

Removed 5 stocks without SST data (e.g., Seto Sea not covered by COBE) 263 

Removed 28 stocks preventing model convergence 235 

   



 

Table S6. Model symbols and their definitions. 
 
Type Symbol Definition 

Data Ci,t Catch for stock i in year t 

Data SPi,t Surplus production for stock i in year t 

Data Bi,t Total biomass for stock i in year t 

Data SSTi,t Sea surface temperature (SST) experienced by stock i in year t 

Data Gi Group (taxonomic, geographic, or stock assessment model) for stock i 

Derived εi,t Residual process variability for stock i in year t 

Parameter ri Intrinsic rate of growth for stock i 

Parameter Ki Carrying capacity for stock i 

Parameter θi Influence of SST on productivity for stock i 

Parameter μSST Mean of the distribution of SST influences (θi) 

Parameter σSST Standard deviation of the distribution of SST influences (θi) 

Parameter μG,j Mean of the distribution of SST influences (θi) for group j 

Parameter σG Standard deviation of the group-specific distributions of SST influences (θi) 

Parameter σP,i Standard deviation of the residual process variability for stock i 

Parameter ρi First-order (AR1) autocorrelation coefficient for stock i 

Constant p Shape parameter: fixed at 1.00, 0.55, 0.20, or 0.01 

Index t Year 

Index i Stock 

Index j Group (taxonomic or geographic) 
   



 

Table S7. Stock assessment methods represented in the data. 
 
Assessment model Number Countries 

Biomass dynamics model (n=30)   
BSPM: Bayesian surplus production model 10 Canada, Tuna-RFMO 

ASPIC: Surplus production model 6 Tuna-RFMO, USA 

Delay difference model 5 Canada, USA 

ASPM: Age-structured surplus production model 4 South Africa 

DPM: Dynamic production model 2 West Africa 

qR: Surplus production model 2 Australia 

LPM: Logistic production model 1 Canada 

Integrated analysis (n=57)   
SS3: Stock Synthesis v3.0 model 26 Australia, Europe, Tuna-RFMO, USA 

SS2: Stock Synthesis v2.0 model 22 Australia, USA 

SMS: Stochastic multi-species model 3 Europe 

CASAL: C++ Algorithmic Stock Assessment Laboratory 2 New Zealand 

IA: Integrated analysis 1 USA 

JJM: Joint jack mackerel 1 Chile 

SS1: Stock Synthesis v1.0 model 1 USA 

SYM: Stochastic yield model 1 USA 

Statistical catch-at-age model (n=55)   
AD-CAM: AD-Model Builder statistical catch-at-age model 20 Europe, South Africa, USA 

SCA: Statistical catch-at-age model 8 Canada, Europe, Tuna-RFMO, USA 

ASAP: Age Structured Assessment Program 6 USA 

BAM: Beaufort assessment model 6 USA 

ICA: Integrated catch-at-age analysis 5 Europe 

TSA: State-space catch-at-age time series analysis 4 Canada, Europe 

MULTIFAN-CL: Length-based, age/spatially-structured model 2 Tuna-RFMO 

SAM: State-space assessment model 2 Europe 



 

CSA: Catch-survey analysis (like a state space approach) 1 USA 

SCALE: A statistical catch-at-length model 1 USA 

Statistical catch-at-length model (n=3)   
AD-CAL: AD-Model Builder catch-at-length model 2 USA 

LBA: Length-based analysis 1 USA 

Survey index (n=5)   
Temporal indices derived from scientific survey data 3 USA 

SURBA: Survey-based stock assessment method 2 Canada 

Unknown (n=38)   
Unknown 27 Canada, Chile, Europe, Peru, South Africa, USA 

MSLM: Multi-stock length-based model 7 New Zealand 

SnapEst: SnapEst age- and length-based model 2 Australia 

CapTool: Spreadsheet assessment model used for capelin 1 Europe 

RYM: Replacement yield model 1 South Africa 

Virtual population analysis (n=47)   
XSA: Extended survivor analysis 26 Argentina, Canada, Europe, Tuna-RFMO 

VPA: Virtual population analysis 16 Argentina, Canada, Europe, Japan, Russia 

ADAPT: Adaptive framework-virtual population analysis 1 Europe 

B-ADAPT: ADAPT approach with year effects in a catch multiplier 1 Europe 

FLXSA: FLR variant of extended survivor analysis 1 Europe 

NFT-ADAPT: VPA/ADPAT version 2.3.2 NOAA Fisheries 1 Europe 

SPA-ADAPT: Sequential population analysis / ADAPT 1 Canada 
  



 

Table S8. AFS and FishBase guidelines for using life history traits to classify the resilience of fish 
stocks to exploitation and the r priors used by catch-MSY for each resilience category.* 
 

Resilience r prior 
Von B 
K (1/yr) 

Maximum 
age (yr) 

Age at 
maturity (yr) 

 

High [0.6, 1.5] >0.3 1-3 <1  

Medium [0.2, 1.0] 0.16-0.30 4-10 2-4  

Low [0.05, 0.5] 0.05-0.15 11-30 5-10  

Very low [0.015, 0.1] <0.05 > 30 >10  

Unknown [0.2, 1.0] ------ ------ ------  
 
* Resilience categories were assigned using, in order of preference, resilience values: (1) reported on FB/SLB; (2) 
derived from the FishLife Von Bertalanffy growth parameter; (3) derived from the FB/SLB Von Bertalanffy growth 
parameter; (4) derived from the FB/SLB vulnerability metric; (5) derived from the FB/SLB Von Bertalanffy maximum 
age; (6) derived from the genus mode; or (7) derived from the family mode.
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