South Atlantic Region EwE Ecosystem Model

Lauren Gentry FWC – FWRI, St. Petersburg December 2020 Lauren.Gentry@myFWC.com

HISTORY OF THE SOUTH ATLANTIC MODEL

- > 2001 Strawman 48-group model constructed
- > 2004 Preliminary 98-group model developed
- 2014 Model refined to address forage fish questions (99 groups)
- > 2019 Model refinement to articulate managed species (143 boxes)

2020 - Model refinement to group together data-poor species (140 boxes, 700+ species)

Diets

April 2019 vs Oct 2020

April 2019

~70 diets for 60 species representing 40 groups

Species proxies for 30 groups

West Florida Shelf model data for 50 groups

Best guess data for 20 groups

December 2020

250 diets for 235 species representing 129 groups

0 Species proxies

West Florida Shelf model data for 17 groups (inverts)

0 Best guess data

Primarily from SEAMAP, NOAA, and published literature

*Also found single predation events in BBC videos, Okeanos livestreams, photo catalogues, etc.

Origins

Quantitative detailed diet study (high quality)						
uantitative detailed diet study (standard quality)	30%					
Qualitative diet study	31%					
General knowledge, expert consult	3%					

	Environ Biol Fish						iron Bi	ol Fish						1			
ion for young of the year (<100 cm fork Table 1 (continued) is empty) (gor sharks by portont number Wang-over the inspectory of occurrence Voung-of-the-year						Publ	ished sto	mach con	tents - %W								
plative importance on a percent basis to categories indicates that prey was not they ham S-N S-W S-O S-RE					1 UDI	isited sto	machicon										
a 5-BB less than 0.01 Or dat Pleuvinectifiotnes																	
						Gauss Parallology 0.83 0.74 3.77 0.06 Parallology 0.21 0.08 1.89 0.01					0.06						·
				5.RI	0	rder Terra	domitormes	2.48	13.89	18.87	3.00						
	5.18	11.1	4 39.62	6.27		Family 0 Genus		0.83		11.32							
	0.21	0.35		0.00		Family T	straodontidae				0.08						
	4.97	10.7	9 39.62	0.05			iodontidae Chikosycterae	0.62	3.61	5.66	0.21						
	0.41	<.01	3.77	0.02		Chi	buychma schoopf		2.92)				
	0.41	0.35	1.89	0.00	0	Family T	amilianes sididas	5.80	5.66	34.53							
	5.80	2.87				Genus	Prionotar		2.78)			
	0.83	0.38	7.55	0.09	0	Family O		0.71	0.06	1.89							
	2.90	2,47		1.38		rda Siluri	formes	0.83			6.65						
io Ionur	0.83	1,40			0	rder Auloy Eamily S		1.65	4.50	7.65	0.47		マ	7			
the						Dachi	soc-phalar wyope	1.04	1.56	3.77	0.10		\sim				
Posts	0.41	0.03		0.02	Uni	Speeds A. Telacote			2.95	1.89							
	1.24	0.60		0.13	2						A			В	С	[)
	0.41	0.58				_					м			D	C C	L	/
	0.41	3.53	3.77	0.14	o	1		Aines et al 2017 "Feeding habits of the tiger shark, Galeocerdo cuvier, in the						r. in the northwest A			
	0.21	1.56	1.89	0.00							-	-					,
	56.11 55.60	36.5	6 50.94 6 40.06	45.79 6 43.85	5	2	Locati	on	1					Sample size	Units	Factors	
-	6.21 6.00 0.83	2.81	3.77	0.50	- 1	3	SAR/G	iOl	Ν					169	% weight	Most were adults	
	48.65	33.3		7 37.50	2								Origina	Data		Changes and	Calculations
	0.62	0.09		0.03	1	4							Uligilia	Data		changes and	calculations
	19.88	43.9	8 71.70	44.38	S C	5				L	ati	n		% W	Proportion	New Functional	Group Decision
			1.89			6	Hydro	pro	ogr	ne	cas	spi	а	2.07	0.0207	Shelf piscivores	
ar.	0,41	4,11	3.77	0.17	đ	7	Order	Ch	ara	adı	riif	ori	mes	0.29	0.0029	Shorebirds	
						8	Teuth	ida	_					0.02	0.0002	Squids	
						9	Antho							0.25		Encrusting fauna	
													-	0.13	0.0023	Liferusting launa	
						10											
						11	1 Sicyonia brevirostris					str	IS	0.47	0.0047		
						12	Stoma	ito	ро	ds				0.16	0.0016		
						13	Calline	ect	es	saj	pid	us		0.4	0.004		

ritespads alphytum Cratacos Clain Malacatinos Order Decipolo Family Formal Order Decipolo Family Skyoer Sigonia Jir Otder Klaismohrmed Family Rajide Brewnis Mammals Order Cancos Dide Cancos

Class Gastrepoli Family Natioi Sinan pery Family Buccin Unid. Castropola Unid. Mollours Plants Unid. Plants Toback Order Perciform Family Scool Order Chapiller Family Chap

Family Charolds

Example of final diet list

Functional Groups	Proportion of Diet
Highly migratory pelagics	0.144299
Sea turtles	0.1217
Demersal coastal omnivores	0.1072
Other deep grouper	0.0917
Echinoderms and gastropods	0.0626
Small coastal sharks	0.056
Pelagic oceanic piscivores	0.0516
Demersal coastal invertivores	0.045801
Offshore dolphins	0.0442
Birds - Wading piscivores	0.0418
Pelagic coastal piscivores	0.0417
Birds - Shelf piscivores	0.0228
Benthic coastal invertivores	0.0209
Benthic coastal piscivores	0.0199
Red snapper	0.0183
Auxis mackerels	0.0129
Pelagic rays	0.0115
Bluefish	0.0113
Birds - Shorebirds	0.0075
Other sciaenids	0.0069
Birds - Shelf invertivores	0.0067
Pelagic planktivores	0.0066
Encrusting fauna	0.0062
Rock shrimps	0.0047
Ocean triggerfish	0.00425
Gray triggerfish	0.00425
Blue crabs	0.004
Demersal rays/skates	0.002
Benthic oceanic invertivores	0.002
Bivalves/oysters	0.0018
Stomatopods	0.0016
Mega-invertebrate predators	0.0013
Marsh vegetation	0.0011

Metadata Scoring

*Multiple species in a group are averaged together in the final matrix

Group #	Group Name	Individual species	Sample size	Year	Location	Diet richness	Detail	Ecological role?
62	Red grouper	red grouper	1	5	6	1	. 4	Ecosystem engineer

6 Metadata Categories and Scores

	Sample Size		Diet richness		% of group found		Year
6	n = 2000+	6	60+ groups in diet	6	200% (two diets)	6	1995-1998
5	n = 1000 - 2000	5	50-60	5	100%	5	1998 - 2019
4	n = 500 - 1000	4	40-50	4	75-99%	4	1985 - 1995
3	n = 300 - 500	3	30-40	3	50-75%	3	1975 - 1985
2	n = 100 - 300	2	20-30	2	25-50%	2	1965 - 1975
1	n = 10 - 100	1	10-20	1	10-25%	1	Before 1965
0	n = 0 - 10	0	0-10	0	0-10%	0	No date given

Detail

6	No unknown material, species level ID
5	0-10% unknown material, excellent ID

- 4 10-30% unknown, some higher taxons
- 3 30-40% unknown, entirely grouped taxons
- 2 40-50% unknown, only functional groups
- 1 50-60% unknown, phylum-level ID only
- 0 60%+ unknown, most vague (ex. fish and crabs)

Location

6	SAR
5	SAR + else
4	GOM/North ATL
3	Caribbean/Puerto Rico
2	Other Atlantic
1	Other oceans
0	Unspecified

Analyses – Sensitivity

EwE Monte Carlo simulation routine for testing uncertainty in diet data

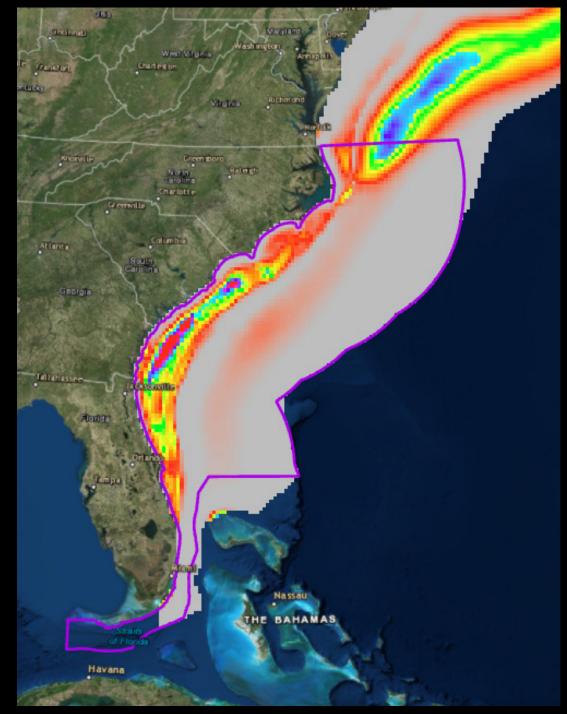
Results correlated (40%) with diet richness scores

Thus isolated groups with high sensitivity adjustments **and** normal/low diet richness Other deep groupers Blue runner Auxis mackerels Herrings Menhaden Analyses – Sensitivity

Can use large adjustments to single predator/prey pairs to identify outliers for closer scrutiny

Predator --- Prey Solution

Halfbeaks --- Seagrass Incidental ingestion Red snapper --- Black seabass Net feeding, added more diets Coastal bottlenose dolphin --- Weakfish Confirmed by other diets Bluefin marlin --- Auxis mackerels High quality data – no change


Biomasses

- Primarily from stock assessments
- Others calculated by FWRI staff (manatee surveys, GIS, etc.)
- 61 of 140 input, Ecopath is estimating the rest

Cetacean biomasses

Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico

Developed by Marine Geospatial Ecology Laboratory - Duke University

Landings

Worked with ACCSP to update commercial landings input

- Gear-specific landings for 1100 species from 1995-2019
- Allocated higher taxonomic groups
- Reallocated 90 million pounds of "unknown" landings (seaweed and inverts)
- Examined outliers

Added recreational/headboat landings to time series that formerly contained only commercial landings

- Found expanded list of MRIP species added 400+ new species' landings
- Now have 153 total time series (formerly 131)
- Quality control on outlying values
 - Contacted NOAA, MRIP, GA DNR, etc. (via Wilson Laney)
 - Scamp, cownose ray outliers a result of extrapolation from <5 catches, removed

Other inputs

Added all discard mortalities currently used by SEDAR stock assessments

 Also added newly published/in-press discard mortalities for deep groupers and gray triggerfish from NCSU

Added time series of primary productivity

- Satellite-derived Chlorophyll *a*
- Calibrated by NASA from both MODIS and SeaWiFS satellites

Checked outputs again best practices and thermodynamics rules

Created pedigree for all basic inputs

- Ecopath uses these pedigrees to track estimates
- Also helps drive Monte Carlo sensitivity analyses

Where we are now: refining vulnerability parameters

What we need to fine-tune final Ecosim fits:

- Guidance on potential applications
- Workgroup feedback on final fits

Value in the process

Use of diet matrix in other applications -NOAA Climate Change Vulnerability Assessment -Ecospecies Database (also long-term repository) -Comprehensive prey lists for other applications

• SAFMC discussions of new ecosystem component sp.

Identifying data gaps and outliers for future research

- Diet data poor species from metadata (locality, modernity, sample size, etc.)

- Biomass for species with large impacts on model outputs
- Outliers in catch data records blueline tilefish is next?

Identifying unusual/valuable interactions

- Shortfin makos consume 80% bluefish
- Blue marlin consume 80% Auxis mackerels

Specifically addresses implementation of FEP II - Ready to use for some applications and Ecospace will provide even more

Black sea bass discard mortality rates

- Ruderhausen et al. 2019 found that descending devices/venting increases survivability by 1.5x vs no intervention
- Reduced recreational discard mortality rate from 14% to 9%
- Model behaved as expected

Biggest Winners and Losers

↑ Biomass

Black seabass Pelagic planktivores Encrusting fauna Squids Bivalves Biomass
Anchovies
Shad
Demersal coastal invertivores
Stomatopods
Mega-inverts (crabs)

Prey overlap (%)

	Red snapper	Red porgy	Red lionfish	Red grouper	Black sea bass
Red snapper					
Red porgy	41				
Red lionfish	65	17			
Red grouper	66	67	41		
Black sea bass	43	62	20	65	

Top overlapping diets								
Red snapp	per	Red porgyRed lionfishBlack set				Black sea bass		
Red lionfish	65	Spiny lobster	93	Scamp	75	Golden tilefish	75	
Red grouper	65	Queen triggerfish	85	Gag	73	Dogfish sharks	74	
Scamp	58	Golden tilefish	80	Red snapper	65	Demersal rays/skates	65	

Contributors SAFMC FWC-FWRI NOAA – NMFS SCDNR NCDENR GADNR ASMFC UF UNF UNC NCSU

140 groups (part 1)

MAMMALS	TAXONOMIC GROUPS	FUNCTIONAL GROUPS	AVES
Coastal bottlenose dolphin	Mullets	Highly migratory pelagics	Birds oceanic piscivores
Offshore dolphins	Other sciaenids	Pelagic oceanic piscivores	Birds shorebirds
Pilot whales	Sardines	Pelagic coastal piscivores	Birds shelf piscivores
Beaked whales	Anchovies	Demersal coastal piscivores	Birds herbivores
Sperm whales	Silversides	Pelagic planktivores	Birds wading piscivores
Baleen whales	Halfbeaks	Demersal coastal invertivores	Birds shelf invertivores
Manatees	Scads	Demersal coastal omnivores	Birds raptors
ELASMOBRANCHS	Shad	Benthic oceanic piscivores	REPTILES
Planktivorous sharks	Sygnathids	Benthic oceanic invertivores	Sea turtles
Large coastal sharks	Other shallow grouper/tilefish	Benthic coastal piscivores	PHOTOSYNTHETICS
Small coastal sharks	Other deep grouper	Benthic coastal invertivores	Phytoplankton
Dogfish sharks	Other shallow snapper	Benthic coastal planktivores	Microphytobenthos
Pelagic sharks	Other mid-shelf snapper		Benthic macroalgae
Pelagic rays	Other jacks		Pelagic macroalgae
Demersal rays/skates	Other porgys		Seagrasses
	Other grunts		Marsh vegetation
	Herrings		

140 groups (part 2)

SINGLE SPECIES GROUPS CONT. Adult king mackerel Permit Juvenile king mackerel Spanish mackerel **Red Lionfish** Juv Spanish mackerel Bluefish Weakfish Gulf flounder Red drum Hogfish Atlantic menhaden Spotted seatrout Gray triggerfish Striped bass Gag grouper Dolphinfish Red grouper Snook Scamp grouper Tarpon **Goliath** grouper Cobia Nassau grouper Bonefish Snowy grouper Sunfish Black seabass Wreckfish Great barracuda

SINGLES SPECIES Atlantic spadefish Summer flounder Southern flounder Ocean triggerfish **Rock/Bank seabass** Atlantic mackerel

SINGLE SPECIES CONT. INVERTS Auxis mackerels Blueline tilefish Golden tilefish Yellowtail snapper Mutton snapper Gray snapper Lane snapper Red snapper **Greater amberjack** Almaco jack Bar jack Queen triggerfish Blue runner Red porgy White grunt Vermillion snapper

Carnivorous jellies **Encrusting fauna** Squids **Stomatopods** Octopods Blue crabs Horseshoe crabs Golden crabs Spiny lobster **Rock shrimps** Penaeid shrimps Megafaunal predators Echinoderms and gastropods Estuarine infaunal crustaceans Estuarine polychaetes

INVERTS CONT.

Bivalves/Oysters Offshore infaunal crustaceans Offshore polychaetes Small mobile epifauna Calico scallops Benthic meiofauna Deep-burrowing infauna Carnivorous zooplankton Other zooplankton Ichthyoplankton Microbial heterotrophs DEAD Estuarine benthic detritus Offshore benthic detritus Water-column detritus **Dead carcasses**