South Atlantic Climate Vulnerability

with comments on changing distributions and essential habitats

John Quinlan and Michael Burton

Southeast Fisheries Science Center National Marine Fisheries Service

Habitat Advisory Panel Meeting South Atlantic Fishery Management Council Charleston, South Carolina November 1st, 2023

What is a CVA and how does it work?

A method that uses expert elicitation and climate projections to assess a species' **exposure** and **sensitivity** to expected climate change. This provides a measure of relative **vulnerability** for the species to climate change.

Vulnerability is related to reductions in a species' productivity and/or abundance in response to climate change.

Exposure – Level of **environmental conditions** derived from the output of an ensemble of climate models.

Sensitivity – An assessment of a set of **life history traits** with respect to extremes for that trait (e.g., generalists versus specialists with respect to feeding)

Vulnerability – Relative degree of change (reduction) in a species ' productivity and/or abundance.

- Quantitative
- Climate model data
- Estimate of species distribution?
- Which emissions assumptions?
- Time frames for reference period and projection period? (Large blocks.)
- Which environmental factors?

Exposure Sea surface temperature Air temperature Salinity Ocean acidification Precipitation Currents Sea level rise **Sensitivity**

- Complexity in Reproduction
 Dispersal of Early Life Stages
 Early Life History Survival and Settlement Requirements
 Habitat Specificity
 Prey Specificity
 Adult Mobility
 pH preferences
- •Thermal preferences
- •Population Growth Rate
- •Stock Size/Status, etc.

Adaptive capacity

Resilience

- Qualitative
- Guided expert judgement.
 & group discussions
- Which species?
- What is known about life history and ecology?
- What is known in specific areas?

Species Vulnerability

Inform science and management actions

South Atlantic Climate Vulnerability Assessment

New Options:

- CMIP6/Other
- Downscaling
- Multiple SSPs
- Multiple time periods

Decision Points	Implementation
Project Scope	71 species / 7 environmental variables / 12 life history traits / SA-LME domain
Model Selection	CMIP5 – RCP 8.5
Temporal Scale	1956-2005 Historical Period; 2006- 2005 Future Period
Sensitivity Attributes	12 Standard Attributes Used
Manuscript	NOAA Technical Memo (Available)

Major Exposure Factors and Biological Sensitivities

	Considered	Most Influential
Environmental Factors	 SST Air Temp Salinity Ocean acidification Precipitation Currents SLR 	 SST Salinity Ocean acidification
Biological Traits	 Habitat Specificity Adult mobility Early life stage dispersal Complexity in reproductive cycle Sensitivity to ocean acidification Sensitivity to temperature Prey Specificity Population growth rate Stock size Status Other stressors 	 Population growth rate Stock size Status

Results Summary

- <u>Environmental</u> exposure is mostly VERY HIGH
- <u>Biological</u> sensitivity VARIES
- NO SPECIES has LOW overall VULNERABILITY

Sensitivity

- Species are in rank order
- Details regarding potential category shifts in TM

Very High 🕨			Atlantic Sturgeon		
High				Nassau grouper Eastern oyster Speckled hind Red grouper Blueback Herring Goliath grouper Warsaw grouper Snowy grouper Horseshoe crab Gag grouper American shad	Dusky Shark White Shrimp Scamp Pink Shrimp Brown Shrimp Spiny Lobster Hogfish Striped Bass Blueline Tilefish Tilefish*
Moderate 🛯				American eel** Snook** Red drum Sandbar shark Bonnethead shark Mutton snapper Sand tiger shark Red snapper Golden crab Redband parrotfish Blue crab Gray snapper	Weakfish Sheepshead Southern Flounder Rock Shrimp Cobia Atlantic Sharpnose Shark Red Porgy Emerald Parrotfish Spotted Seatrout Black Drum Yellowtail Snapper Almaco Jack
Low				White grunt Gray triggerfish Bluefish Striped mullet Belted sandfish Cubbyu Slippery dick Black sea bass Atlantic croaker Spiny dogfish Spanish mackerel King mackerel Blue runner	Spot Lane Snapper Atlantic Menhaden Tomtate Dolphin Greater Amberjack Pinfish Wahoo Anchovies Vermilion Snapper Little Tunny Lionfish
	Low	Moderate	High Exp	osure	Very High

Climate Vulnerability and Species Distribution Change

Additional EFH Considerations

- Are highly vulnerable species dependent on highly vulnerable habitat at one or more life history stages?
- Will currently designated EFH change markedly as physical and chemical conditions shift?
- Is there a need to identify areas outside the current designations that will offer EFH in the future?
- Are those areas outside of existing management boundaries?
- How will species distributions change and what are the time scales involved?
- Would some other set of decisions in CVA set-up provide additional insight (more/less risk adverse)?

Additional EFH Considerations

- Which emissions assumptions are you comfortable with for the process at hand?
- Is you time frame measured on multiple years or multiple decade?
- What reference period (baseline) would you want to compare change against?

Some of the new options

- CMIP6 is available now and becoming better understood
- Multiple emissions frameworks (SSPs) to choose from.
- Multiple reference and projection period time frames.
- Choose from a pallet of options for any given use case?

	Near term, 202	1-2040	Mid-term, 2041	-2060	Long-term, 208	1-2100
Scenario	Best estimate (C)	<i>Very likely</i> range (C)	Best estimate (C)	<i>Very likely</i> range (C)	Best estimate (C)	<i>Very likely</i> range (C)
SSP1- 1.9	1.5	1.2 to 1.7	1.6	1.2 to 2.0	1.4	1.0 to 1.8
SSP1- 2.6	1.5	1.2 to 1.8	1.7	1.3 to 2.2	1.8	1.3 to 2.4
SSP2- 4.5	1.5	1.2 to 1.8	2.0	1.6 to 2.5	2.7	2.1 to 3.5
SSP3- 7.0	1.5	1.2 to 1.8	2.1	1.7 to 2.6	3.6	2.8 to 4.6
SSP5- 8.5	1.6	1.3 to 1.9	2.4	1.9 to 3.0	4.4	3.3 to 5.7
104						

AR6 assessed warming projections for each of the five core emissions scenarios in the near-, mid- and long term. Source: IPCC (2021) Table SPM.1

Where things may go

- Climate, Ecosystem and Fisheries Initiative will offer new regionally-focused climate model products.
- Next-Gen Assessment processes may be a combination of traditional CVAs and Dynamic Ocean Modeling approaches.

Prototype MOM6 coast-wide domains for seasons to decades (Great Lakes, Pacific Islands in progress)

Thank you!

- John.A.Quinlan@NOAA.gov
- Lauren.Waters@NOAA.gov
- Roldan.Munoz@NOAA.gov

Happy to take questions if there's time!

What is CEFI?

Cross-NOAA effort to provide climate-informed advice for marine resource management and community adaptation.

Builds on existing NOAA investments in research, modeling, and decision-making.

End-to-end decision support system to address four requirements for establishing regular climate-informed information delivery & decision making

- 1. Reliable delivery of robust ocean forecasts and projections.
- 2. Operational production of climate-informed advice (ecosystem projections, risk assessments and adaptation strategies).
- 3. Increased decision maker capacity to use climate advice.

4. Targeted research & observations for validation & innovation. Improved planning for extreme events & long term changes

CEFI Decision Support System

Home 🔹 cefi-portal

Climate Ecosystems and Fisheries Initiative Portal

Overview	Models -	Observations -	Information Hub	Cookbooks	Resources

Featured Resources

https://psl.noaa.gov/cefi_portal/#overView

CEFI Regional Teams

Regional **ARCTIC/ALASKA** Ocean Modeling **Teams** HELP DESK **GREAT LAKES** Customize WEST COAS MOM6 regional **PACIFIC ISLANDS** ocean projections for NMFS & other users

Regional **Decision Support Teams Produce** ecological projections and info for stock, risk & strategy assessments

EAST COAST

How will the CEFI Decision Support Teams work?

Examples of climateinformed decision support tools produced for/with existing SCenter programs

Eco-climate hindcasts, forecasts, projections Climate-linked stock assessments Climate-informed targets & reference points **Risk tables** Tipping point detection and risk Near-real time protected spp / bycatch risk maps Projected species hot-spots Future climate refugia (spatial) Species risk profiles Management strategy evaluations & **Community resilience strategies** Adaptation feasibility & effectiveness analyses Contingency and emergency planning and response **Dynamic management tools**

SE Region CEFI Updates

Developments still in progress:

- SEFSC/SERO: SE Decision Support Team, 4 positions, mix of FTEs and affiliates: Regional Ocean Modeler, Climate Enhanced (CE) Stock Assessment & Management Strategy Coordinator, CE Social/Resilience Modeler, CE Spatial Modeler
 - 6 initial projects: Development of climate-informed fishery management advice;
 - Development of climate indicators for inclusion in SEFSC Ecosystem Status Reports;
 - Stakeholder outreach and participatory research on social-ecological systems;
 - Understanding and predicting management implications of species distribution shifts;
 - Design climate-ready surveys in partnership with the NEFSC to furnish data for the CEFI East Coast Regional Ocean Modeling Team;
 - Coral conservation OA and temperature projections