

NOAA FISHERIES

SouthEast Fisheries Science Center

SEDAR 73 South Atlantic Red Snapper SAFMC meeting June 2021

SA Red Snapper assessment history

- SEDAR15 found the stock to be overfished (SSB₂₀₀₆/SSB_{F40%} = 0.03) and undergoing overfishing (F₂₀₀₆/F_{40%} = 7.7)
- SEDAR24 found the stock to be overfished (SSB₂₀₀₉/MSST= 0.09) and undergoing overfishing ($F_{2007-2009}/F_{MSY} = 4.1$)
- SEDAR41 found the stock to be overfished (SSB₂₀₁₄/SSB_{F30%} = 0.14) and undergoing overfishing ($F_{2012-2014}/F_{30\%}$ = 2.8)
- SEDAR73 finds the stock to be overfished (SSB₂₀₁₉/SSB_{F30%} = 0.44) and undergoing overfishing ($F_{2017-2019}/F_{30\%}$ = 2.2)
 - Assessment period: 1950 2019
- Together, these assessments indicate progress toward rebuilding and ending overfishing
- Since SEDAR24, the proxy for MSY is 30% SPR (codified)

SEDAR73 assessment process

- Data Scoping Webinar (July 9, 2020)
- Selectivity Working Group (Aug Nov, 2020)
- Data Workshop (December 1-4 & 16, 2020)
- SSC Webinar (Jan 11, 2021)
- Three Assessment Webinars (Jan Feb, 2021)
- SSC Review (April 27 & May 3, 2021)

New data/information included in SEDAR73

- Current MRIP methodology
- Life history
 - Batch fecundity, Natural mortality
- Indices of abundance
 - SERFS trap and video as separate time series
 - FWRI repetitive timed drop survey (hook-and-line) + age comps
- Discard length comps
 - Commercial: shark bottom longline observer program
 - Headboats: Captain Steve Amick measurements
 - Gen rec: FWRI charterboat observers, MyFishCount
- Discard mortality and use of descender devices

Landings and discard mortalities (in numbers)

Indices of abundance

Results Numbers and Biomass-at-age

NOAA FISHERIES

Results Biomass-at-age

Results Fishing mortality

Results Status uncertainty

Summary of assessment results

- SA red snapper are not yet rebuilt
- Overfishing continued through 2019
- Overfishing resulted primarily from recreational discards
- Estimated red snapper abundance has increased substantially in recent years, and is highest at the end of the time series
 - This result is driven by high, recent recruitment
- The age structure has filled out, but not yet to the level expected at F30%
- Natural mortality remains a key source of uncertainty in this assessment
 - Though stock status is robust to range used in this assessment

Forecasts

- Six scenarios identified by the SSC working group,
 3 F scenarios X 2 recruitment scenarios
- F scenarios
 - $F=F_{30\%}$ (for OFL)
 - Frebuild with 0.500 probability (used previously)
 - Frebuild with 0.675 probability (SSC's P* control rule)
- Recruitment scenarios
 - Long-term average recruitment
 - Recent high recruitment
- These six scenarios are in the assessment report

Forecasts

- SSC requested 12 additional forecasts and information about methodology, to be reviewed later
- Key decision points
 - Is future recruitment most likely to follow recent trends or return to long-term average?
 - Expected use of descender devices? Still under consideration.
 - Probability of rebuilding equal to 0.5 or 0.675? Still under consideration.

Questions?

Management quantities

Quantity	Units	Estimate	Median	SE
$F_{30\%}$	y ⁻¹	0.21	0.21	0.02
$85\%F_{30\%}$	y ⁻¹	0.17	0.17	0.02
$75\%F_{30\%}$	y ⁻¹	0.15	0.15	0.02
$65\% F_{30\%}$	y^{-1}	0.13	0.13	0.01
$F_{40\%}$	y^{-1}	0.15	0.15	0.02
$E_{F30\%}$		0.10	0.10	0.01
$B_{\rm F30\%}$	metric tons	6530.71	6483.54	1475.32
$SSB_{F30\%}$	eggs (1E8)	635426.40	594630.20	233432.64
MSST	eggs (1E8)	476569.80	445972.60	175074.48
$L_{F30\%}$	1000 lb whole	404.70	407.78	99.69
$R_{\rm F30\%}$	number fish	436868.50	439823.20	89925.13
$L_{85\%F30\%}$	1000 lb whole	404.85	407.88	98.99
$L_{75\%F30\%}$	1000 lb whole	398.97	401.84	97.18
$L_{65\%F30\%}$	1000 lb whole	386.75	389.45	93.96
$F_{2017-2019}/F_{30\%}$		2.20	1.95	0.45
$E_{2017-2019}/E_{\rm F30\%}$		2.20	1.97	0.53
SSB ₂₀₁₉ /MSST		0.59	0.66	0.27
SSB ₂₀₁₉ /SSB _{F30%}		0.44	0.49	0.20

<u>SEDAR41</u> 2.84

0.14

Discard Mortality

Fleet	Block 1	Block 2	Block 3	Block 4
cH HB GR	$\begin{array}{l} 0.48(0.38-0.58)\\ 0.37(0.27-0.45)\\ 0.37(0.27-0.45)\end{array}$	$\begin{array}{l} 0.38(0.28-0.48)\ 0.26(0.18-0.34)\ 0.28(0.20-0.36) \end{array}$	$\begin{array}{l} 0.36(0.26-0.46)\\ 0.25(0.17-0.33)\\ 0.26(0.18-0.34)\end{array}$	$\begin{array}{l} 0.32(0.22-0.42)\\ 0.22(0.14-0.30)\\ 0.23(0.15-0.31) \end{array}$

Block 1

- Recreational: pre-2011
- Commercial: pre-2007
- Block 2 (circle hooks)

NOAA FISHERIES

- Recreational: 2011-2016
- Commercial: 2007-2016
- Block 3 (circle hooks + 25% descender device use)
 - All fleets: 2017-2020
- Block 4 (circle hooks + 75% descender device use)
 - All fleets: post-2020 (forecasts)

Reductions in Blocks 3 and 4 based on Vecchio et al. (S73-WP15)

Results Total abundance of ages 1+ and 2+

NOAA FISHERIES

Results Exploitation rate

Example forecast (Frebuild with 0.675 prob and mean recruitment)

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 25

Example forecast (Frebuild with 0.675 prob and high recruitment)

Comparison to SEDAR41

