NOAA FISHERIES
SouthEast
Fisheries
Science Center

SEDAR 73 South Atlantic Red Snapper

 SAFMC meeting June 2021

SA Red Snapper assessment history

- SEDAR15 found the stock to be overfished $\left(\mathrm{SSB}_{2006} / S S B_{F 40 \%}=0.03\right)$ and undergoing overfishing $\left(\mathrm{F}_{2006} / \mathrm{F}_{40 \%}=7.7\right)$
- SEDAR24 found the stock to be overfished $\left(\right.$ SSB $\left._{2009} / M S S T=0.09\right)$ and undergoing overfishing $\left(F_{2007-2009} / F_{\text {MSY }}=4.1\right)$
- SEDAR41 found the stock to be overfished $\left(\mathrm{SSB}_{2014} / \mathrm{SSB}_{\mathrm{F} 30 \%}=0.14\right)$ and undergoing overfishing $\left(F_{2012-2014} / F_{30 \%}=2.8\right)$
- SEDAR73 finds the stock to be overfished $\left(\mathrm{SSB}_{2019} /\right.$ SSB $\left._{\mathrm{F} 30 \%}=0.44\right)$ and undergoing overfishing $\left(F_{2017-2019} / F_{30 \%}=2.2\right)$
- Assessment period: 1950-2019
- Together, these assessments indicate progress toward rebuilding and ending overfishing
- Since SEDAR24, the proxy for MSY is 30% SPR (codified)

SEDAR73 assessment process

- Data Scoping Webinar (July 9, 2020)
- Selectivity Working Group (Aug - Nov, 2020)
- Data Workshop (December 1-4 \& 16, 2020)
- SSC Webinar (Jan 11, 2021)
- Three Assessment Webinars (Jan - Feb, 2021)
- SSC Review (April 27 \& May 3, 2021)

New data/information included in SEDAR73

- Current MRIP methodology
- Life history
- Batch fecundity, Natural mortality
- Indices of abundance
- SERFS trap and video as separate time series
- FWRI repetitive timed drop survey (hook-and-line) + age comps
- Discard length comps
- Commercial: shark bottom longline observer program
- Headboats: Captain Steve Amick measurements
- Gen rec: FWRI charterboat observers, MyFishCount
- Discard mortality and use of descender devices

Landings and discard mortalities (in numbers)

Landings in numbers (fish)

Dead discards in numbers (fish)

Indices

Indices of abundance

Indices

Recent years: Trap, Video and headboat observer data

1
0.5

0

Results

Numbers and Biomass-at-age

Results

Biomass-at-age

Results

Recruitment

Results

Fishing mortality

Results

Spawning stock

Results

Status uncertainty

Summary of assessment results

- SA red snapper are not yet rebuilt
- Overfishing continued through 2019
- Overfishing resulted primarily from recreational discards
- Estimated red snapper abundance has increased substantially in recent years, and is highest at the end of the time series
- This result is driven by high, recent recruitment
- The age structure has filled out, but not yet to the level expected at F30\%
- Natural mortality remains a key source of uncertainty in this assessment
- Though stock status is robust to range used in this assessment

Forecasts

- Six scenarios identified by the SSC working group, 3 F scenarios X 2 recruitment scenarios
- F scenarios
- $F=F_{30 \%}$ (for OFL)
- Frebuild with 0.500 probability (used previously)
- Frebuild with 0.675 probability (SSC's P* control rule)
- Recruitment scenarios
- Long-term average recruitment
- Recent high recruitment
- These six scenarios are in the assessment report

Forecasts

- SSC requested 12 additional forecasts and information about methodology, to be reviewed later
- Key decision points
- Is future recruitment most likely to follow recent trends or return to long-term average?
- Expected use of descender devices? Still under consideration.
- Probability of rebuilding equal to 0.5 or 0.675 ? Still under consideration.

Questions?

Extras

Management quantities

Quantity	Units	Estimate	Median	SE
$F_{30 \%}$	y^{-1}	0.21	0.21	0.02
$85 \% F_{30 \%}$	y^{-1}	0.17	0.17	0.02
$75 \% F_{30 \%}$	y^{-1}	0.15	0.15	0.02
$65 \% F_{30 \%}$	y^{-1}	0.13	0.13	0.01
$F_{40 \%}$	y^{-1}	0.15	0.15	0.02
$E_{\mathrm{F} 30 \%}$	-	0.10	0.10	0.01
$B_{\mathrm{F} 33 \%}$	metric tons	6530.71	6483.54	1475.32
$\mathrm{SSB}_{\mathrm{F3} \% \%}$	eggs (1E8)	635426.40	594630.20	233432.64
MSST^{2}	eggs (1E8)	476569.80	445972.60	175074.48
$L_{\mathrm{F} 30 \%}$	1000 lb whole	404.70	407.78	99.69
$R_{\mathrm{F} 30 \%}$	number fish	436868.50	439823.20	89925.13
$L_{85 \% \mathrm{~F} 30 \%}$	1000 lb whole	404.85	407.88	98.99
$L_{75 \% \mathrm{~F} 30 \%}$	1000 lb whole	398.97	401.84	97.18
$L_{65 \% \mathrm{~F} 30 \%}$	1000 lb whole	386.75	389.45	93.96
$F_{2017-2019} / F_{30 \%}$	-	2.20	1.95	0.45
$E_{2017-2019} / E_{\mathrm{F} 30 \%}$	-	2.20	1.97	0.53
$\mathrm{SSB}_{2019} / \mathrm{MSST}^{2}$	-	0.59	0.66	0.27
$\mathrm{SSB}_{2019} / \mathrm{SSB}_{\mathrm{FS3} \%}$	-	0.44	0.49	0.20

Discard Mortality

Fleet	Block 1	Block 2	Block 3	Block 4
$c H$	$0.48(0.38-0.58)$	$0.38(0.28-0.48)$	$0.36(0.26-0.46)$	$0.32(0.22-0.42)$
$H B$	$0.37(0.27-0.45)$	$0.26(0.18-0.34)$	$0.25(0.17-0.33)$	$0.22(0.14-0.30)$
$G R$	$0.37(0.27-0.45)$	$0.28(0.20-0.36)$	$0.26(0.18-0.34)$	$0.23(0.15-0.31)$

Block 1

- Recreational: pre-2011
- Commercial: pre-2007

Block 2 (circle hooks)

- Recreational: 2011-2016
- Commercial: 2007-2016

Block 3 (circle hooks + 25\% descender device use)

- All fleets: 2017-2020

Block 4 (circle hooks + 75\% descender device use)

- All fleets: post-2020 (forecasts)
> Reductions in Blocks 3 and 4 based on Vecchio et al. (S73-WP15)

Results

Total abundance of ages 1+ and 2+

Results

Exploitation rate

Results

Age structure

Example forecast (Frebuild with 0.675 prob and mean recruitment)

Example forecast (Frebuild with 0.675 prob and high recruitment)

Comparison to SEDAR41

