Science, Service, Stewardship

Red grouper (*Epinephelus morio*) Atlantic stock

SEDAR 19 SSC Review 20 April 2010

Kyle Shertzer, NOAA Beaufort, NC NOAA FISHERIES SERVICE

- Assessment data
 - -Stock definition and life history
 - -Landings and discards
 - -Length and age compositions
 - -Indices of abundance
- Assessment models
 - -Catch curve analysis
 - -Beaufort statistical catch-age model
 - —Stock Synthesis 3
 - -Surplus production model
- Projections

NOAF

Southeastern U.S., with fishery management council boundaries

- Maximum observed age of 26
- Hoenig estimate is M=0.14

Age

- •Protogynous hermaphrodite (logistic model for proportion male at age)
- •Logistic model for female maturity; all males assumed mature

•Spawning season February–June, peak in April (assessment assumes spawning occurs at mid-April)

•Spawning biomass

- —Total mature biomass of both sexes
- —Sensitivity runs using female or male mature biomass

Summary of red grouper regulations

	Commercial	Re	creational
Year	Size Limit	Size Limit	Possession Limit
FEDERAL +NC, SC, GA			
1983 (August)	12" TL	12" TL	
1992 (January)	20" TL	20" TL	5 grouper/person/d
FLORIDA			
1985 (July)	18" TL	18" TL	
1990 (February)	20" TL	20" TL	

- Recreational landings in units 1000 fish
- Sampling of general recreational 1981–2008 (MRFSS)
 - MRFSS landings smoothed for input to assessment model
- Sampling of headboats 1972–2008
- Assessment period 1976–2008
 - In years without data, assessment applied average F by fleet

year

Commercial landings

- Commercial landings in units 1000 lb whole weight
- Pooled commercial handline and longline landings into "commercial lines"
- Pooled commercial diving, trap, and miscellaneous gears into "commercial other"
- Why pool?
 - Not much information to estimate separate selectivity for longline gear
 - Evidence that handline and longline caught similar sized fish
 - Trap, diving, and miscellaneous likely have dome shaped selectivity

Year

Discards (units 1000 fish)

- Recreational
 - MRFSS discard estimates available for 1981–2008 (smoothed)
 - Headboat discard estimates available for 2005–2007, extended back to 1984 with start of size limit
- Commercial lines
 - Handlines logbook estimates for 1992–2008, extended back to 1984 with start of size limit
- Assessment period 1976–2008
 - In years without data, assessment applied average F by fleet

year

- Empirical estimates are few and variable
- Point estimate of 0.2 for all sectors, as suggested by the DW
- Range applied to base model (0.1, 0.3)
- Sensitivity runs: 0.1, 0.3, 0.7

Discard mortalities modeled by fleet

Year

- Fishery independent
 - FL keys visual survey (U. Miami)
 - MARMAP chevron traps
- Fishery dependent
 - Commercial logbook
 - Headboat
 - MRFSS

- Methods from Conn. 2010.
 CJFAS 67:108-120.
- Used in select production model runs only

Fishery independent and recreational: length comp sample sizes

	MAR	MAP	RVC	Data	MF	RFSS	Head	lboat	Headboa	at Discards
			N_D	iveEv						
Year	N (fish)	N (trips)	ents	;	N (total)	N (trips)*	N (fish)	N (trips)	N (fish)	N (trips)
1973							10	9		
1974							14	9		
1975							26	18		
1976							65	40		
1977							120	73		
1978							98	56		
1979							158	89		
1980							194	115		
1981					23	3 17	237	148		
1982					31	16	277	162		
1983					31	19	382	224		
1984					30) 22	573	284		
1985				\mathbf{M}	17	7 14	577	247		
1986				M I	27	7 14	384	203		
1987				V	31	21	287	173		
1988				V	22	2 14	210	139		
1989					34	11	241	153		
1990	2	2		٨	8	6 6	155	104		
1991	3	3		Λ	7	7 Y	65	54		
1992	16	6		\mathbf{N}	26	5 23	83	59		
1993	20	8		Λ	41	L 27	111	80		
1994	30	10		126	41	L 27	144	104		
1995	9	6		291	50) 31	186	112		
1996	10	9		151	41	32	263	157		
1997	40	23		408	40) 29	404	186		
1998	78	28		461	58	3 44	466	272		
1999	48	21		440	64	4 38	310	192		
2000	38	25		527	34	24	203	132		
2001	38	20		742	71	48	160	119		
2002	37	21		628	104	60	189	142		
2003	37	19		448	88	3 53	120	94		
2004	40	22		246	82	2 36	152	97		
2005	29	25		498	61	37	154	107	28	0 93
2006	44	18		608	95	5 40	137	93	154	4 59
2007	43	21		619	181	43	126	85	12	6 36
2008	24	12		735	179) 55	64	49	6	3 22 <mark>2</mark> 9

Commerical: length comp sample sizes

		Lir	Pots and Traps			
Year		N (fish)	N (trips)	N (fish)	N (tri	ps)
19	84	91	19			
19	85	131	31			
19	86	1017	33	1	.243	13
19	87	1510	46		756	6
19	88	1975	67		33	1
19	89	774	62		357	8
19	90	603	73		70	6
19	91	627	77		30	5
19	92	194	42		21	2
19	93	429	71			
19	94	576	76		15	1
19	95	1064	94			
19	96	364	79			
19	97	400	64			
19	98	688	105			
19	99	1636	176			
20	00	1595	214			
20	01	850	149			
20	02	596	116			
20	03	809	135			
20	04	1239	181			
20	05	1390	259			
20	06	2180	314			
20	07	3755	432		26	4
20	08	3866	408			

NOAA		MARMAP Recreational		Headboat		Handline			
NUAA		N	Ν	N	Ν	Ν	Ν	Ν	Ν
FISHERIES	Year	(fish)	(trips)	(fish)	(trips)	(fish)	(trips)	(fish)	(trips)
SERVICE	1977					7	6		
	1978					12	7		
NID ATMOSPHER	1979					40	30		
BUT DOBB	1980					153	76		
STRAT	1981					180	113		
	1982					74	51		
GET ANTMENT OF COMMENT	1983					38	35		
	1984					44	41		
	1985					24	20		
	1986					18	13		
Age comp	1987					1/	8	-	
	1988					22	14	5) 1
sample sizes	1989					11	4		
•	1001	2				11	10		
	1002	15	5 5 5 6			10	5 51		
	1992	10) 0) 8			4			
	1994	20	, 0) 10			9	7		
	1995	7	, 10 , 6				,		
	1996	g) 9			8	7		
	1997	36) 23			2	2	21	. 9
	1998	72	28			3	3	42	. 17
	1999	47	' 21					27	' 13
	2000	33	3 25					22	11
	2001	37	' 20	14	6			52	21
	2002	36	5 21	46	5 20	3	3	24	. 17
	2003	36	6 19	30) 13	9	8	36	15
	2004	39	22	17	' 7	34	30	268	65
	2005	28	3 25	38	8 16	82	68	535	147
	2006	44	18	19) 8	59	52	853	219
	2007	43	3 21	8	3 3	47	42	1327	387
	2008	16	<u>i</u> 12	3	8 1	36	25	2104	395

Et .

NOAA FISHERIES SERVICE Catch Curve Analysis

- Regression and Chapman-Robson estimators
- Point estimates of total mortality Z are generally in the range of (0.3,0.6), but wide confidence intervals

Z from headboat age comps

Z from commercial age comps

- Same basic formulation used in previous SEDAR assessments of Atlantic snapper-grouper species.
- Forward-projecting
- AD Model Builder software for optimization (parameters added in phases)
- Tested on simulated data
- Statistical catch-age model: Likelihood includes multinomial (composition data) and lognormal (landings and index data) components, plus priors and penalty terms.

BAM: overview

- Modeled ages 1–16+
- Assessment period: 1976–2008.
- Initial abundance at age estimated, penalized for deviating from stable age structure given early F
- Age-varying natural mortality (M), based on Lorenzen (1996)
- Age-length conversion matrix
 - Probability matrix that assumes normal distribution of length at age with estimated CV
 - Truncated normal if size limit applies
- Baranov catch equation
- Options for catchability applied to fishery dependent indices

- Beverton-Holt spawner-recruit model
- Spawners based on total mature biomass (males + females)
- Annual recruitment events loosely conditioned on S-R curve with lognormal error
- MSY-benchmarks from bias-corrected S-R model

•Steepness is a key parameter of the spawner-recruit function defining productivity of the stock, particularly at low stock sizes

•Applied a normal prior, with mean=0.72 and sd=0.17 (SEDAR19-DW-06).

•Model runs indicate steepness ≈ 0.92

BAM: selectivities

- MARMAP trap modeled with the double-logistic fcn (dome-shaped)
- Commercial lines, recreational, headboat
 - Landings selectivities modeled with the logistic fcn (flat-topped)
 - Discard selectivities
 - Age-1 Estimated (free parameter)
 - Age-2 Fixed at 1.0 (full selection)
 - Age-3+ Fixed at age-specific probability of being below cutoff size
- Commercial other (pots, traps, diving, misc.)
 - Modeled as dome-shaped
 - Little comp data for estimation
 - Mirrors chevron trap selectivity, but with ascending inflection point fixed at age at size limit
- Selectivity used to estimate benchmarks is an F-weighted average across landings and discard selectivities from last three assessment years (2006– 2008)
- Selectivities for fishery dependent indices were the same as those applied to the fisheries. MRFSS index selectivity included landings and discards.

BAM: catchability options

- Catchability for fishery independent indices
 - Constant q
- Catchability for fishery dependent indices
 - Constant q
 - Linearly increasing q until 2003, constant thereafter
 - Density dependent q
 - Random walk
- AW applied random walk to fishery dependent indices, and examined q as a function of either time or biomass. No patterns emerged, and so AW recommended constant q as the most parsimonious choice.

Accommodating missing data

- Assessment yrs are 1976–2008. Landings and discards data not available for all years for all fleets.
 - MRFSS L and D: 1981–2008
 - HB D: 2005–2007 (DW filled in blanks with ratios)
 - Comm lines D: 1992–2008
- Model predicts missing L and D using average F's (these years are not included in the objective fcn)
 - MRFSS L extended back to 1976 using average 1981–1983 F
 - HB D extended to fill 1984–2008, with average 2005–2007 F
 - Comm lines D extended to fill 1984–2008, with average 1992–2008 F

- No external weights applied
- Lognormal components controlled by CV
 - Landings, discards assumed to have CV=0.05 to achieve close fit
 - Indices applied the CV estimated by the DW
- Age/length composition fits influenced by effective sample size, here assumed to equal the number of trips sampled (rather than number of fish)

- Base run configuration:
 - Age-based M scaled to Hoenig M=0.14
 - Discard mortality rate of 0.2
- Uncertainty in results estimated using:
 - Sensitivity and retrospective analyses
 - Mixed Monte Carlo and bootstrap approach (MCB)

- Landings, discards fit closely (by design)
- Indices and age/length comps fit reasonably well
- Any concerns?

BAM selectivities (base run)

Figure 6.27. Selectivities of commercial lines. Top panel: 1976-1991. Bottom panel: 1992-2008.

BAM selectivities (base run)

Figure 6.28. Selectivities of commercial other gears. Top panel: 1976-1991. Bottom panel: 1992-2008.

BAM selectivities (base run)

Figure 6.29. Selectivities of the headboat fleet. Top panel: 1976–1983. Middle panel: 1984–1991. Bottom panel: 1992–2008.

BAM selectivities (base run)

15

5

0.0

Figure 6.30. Selectivities of the general recreational fleet. Top panel: 1976–1983. Middle panel: 1984–1991. Bottom panel: 1992–2008.

1.0 Selectivity at age 0.8 0.6 0.4 0.2 0.0 15 5 10 Age 1.0 Selectivity at age 0.8 0.6 0.4 0.2 0.0 5 10 15 Age 1.0 Selectivity at age 0.8 0.6 0.4 0.2 0.0 5 10 15

Age

BAM selectivities (base run)

Figure 6.32. Average selectivities from the terminal assessment year (2008, 20-inch limit), weighted by geometric mean Fs from the last three assessment years, and used in computation of benchmarks and base-run projections. Top panel: average selectivity applied to landings. Middle panel: average selectivity applied to discard mortalities. Bottom panel: total average selectivity.

BAM selectivities (base run)

BAM results (base run)

Year

BAM results (base run)

Year

BAM results (base run)

Spawning stock (total mature biomass, mt)

Year

Year

Natural log of abundance

age

BAM results (base run – per recruit analysis)

BAM results (base runequilibrium analysis)

Fishing mortality rate

Fishing mortality rate

NOAA

BAM results: management quantities

Units

Estimate

SE

96

0.26

0.25

0.030 0.026 0.023 0.020 0.029 0.019 0.012 569 519 487 102

Quantity

	F _{MSY}	y ⁻¹	0.221
	85%F _{MSY}	y ⁻¹	0.188
	$75\%F_{MSY}$	y^{-1}	0.166
	$65\%F_{MSY}$	y^{-1}	0.144
	F _{30%}	y^{-1}	0.189
	$F_{40\%}$	y^{-1}	0.127
	$F_{50\%}$	y^{-1}	0.088
	B _{MSY}	mt	3680
	SSB _{MSY}	mt	2592
	MSST	mt	2229
	MSY	1000 lb	1110
	D_{MSY}	1000 fish	27
	R _{MSY}	1000 age-1 fish	407
	Y at 85%F _{MSY}	1000 lb	1103
	Y at 75%F _{MSY}	1000 lb	1089
	Y at 65%F _{MSY}	1000 lb	1064
minal year	F_{2008}/F_{MSY}		1.35
ast three years	SSB ₂₀₀₈ /MSST		0.92

NOTE: Stock status from terminal

Fishery status from last three years

BAM sensitivity analyses

AW sensitivity runs

Run	Description	F_{MSY}	SSB _{MSY} (mt)	MSY(1000 lb)	$F_{2008}/F_{\rm MSY}$	SSB ₂₀₀₈ /MSST	steep	R0(1000)
Base	_	0.212	2545	1117	1.46	0.79	0.91	399
S 1	Low M	0.171	3501	1270	2.03	0.49	0.95	306
S 2	High M	0.274	1825	987	0.92	1.47	0.85	589
S 3	Extreme M	0.421	1413	1004	0.41	3.29	0.76	1175
S4	Low D mort	0.248	2085	1069	1.22	0.99	0.92	357
S 5	High D mort	0.19	3019	1187	1.67	0.66	0.90	447
S 6	SSB female	0.222	1356	1075	1.39	0.94	0.80	376
S 7	SSB male	0.222	1027	1121	1.40	0.72	0.97	390
<u>S8</u>	Retro 2004	0.188	2521	1001	1.49	0.72	0.92	375
S 9	Retro 2006	0.168	2806	979	1.69	0.58	0.91	394
S 10	Retro 2005	0.15	3443	1063	1.36	0.65	0.89	461

RW sensitivity runs

Run	Description	$F_{\rm MSY}$	SSB _{MSY} (mt)	MSY(1000 lb)	$F_{2008}/F_{\rm MSY}$	SSB ₂₀₀₈ /MSST	steep	R0(1000)
Base	_	0.221	2592	1110	1.35	0.92	0.92	384
S1	Low M	0.177	3543	1267	1.89	0.57	0.95	294
S2	High M	0.292	1855	972	0.84	1.68	0.86	564
S3	Extreme M	0.464	1449	985	0.35	3.77	0.78	1139
S4	Low D mort	0.261	2153	1072	1.15	1.1	0.93	347
S5	High D mort	0.196	3026	1161	1.52	0.79	0.91	424
S 6	Very high D mort	0.147	4919	1437	2	0.49	0.88	605

0.5

1.0

F(2006-2008)/Fmsy

1.5

2.0

0

1

0.0

υτυ

4

2

F(2006-2008)/Fmsy

3

Monte Carlo/Bootstrap (MCB) approach

- Bootstrap of data
 - Landings, discards, and indices: lognormal distribution with CV in arithmetic space assumed to be 0.05 (landings and discards) or as estimated (indices)
 - Age, length comps: multinomial distribution with annual cell probabilities and sample sizes from original data
- Monte Carlo of key parameter inputs
 - Natural mortality (to scale Lorenzen M): Truncated normal distribution [0.1,0.2] with mean M=0.14 and standard deviation such that the lower bound (0.1) is the 95% confidence limit
 - Discard mortality: Uniform distribution [0.1,0.3]
- N=2500 MCB trials attempted, N=2467 used to characterize uncertainty (remaining 1.3% discarded because did not converge)

BAM MCB management quantities (base run, MCB runs)

BAM MCB results: Gray indicates 5th and 95th percentiles from MCB runs

- Canned software from NMFS toolbox, programmed in ADMB by Rick Methot
 - Rick recently added the "sex-switcher" option
 - Rick helped configure red grouper input files
- Statistical catch-age model
- SS is very similar in structure to the BAM, with some differences ...

How does SS model differ from BAM?

- Recruits at age 0, rather than age 1
- SSB computed at beginning of year, rather than time of peak spawning
- Selectivities are length-based, rather than age-based (although modeled population is still age-based)
- Catch divided into landings and discards with a retention function
- Dome-shaped selectivities modeled with the double normal function, rather than double logistic
- Probability of sex transition modeled with the cumulative normal function, rather than proportion male at age with the logistic function.
- SS was not re-run without the RVC index

How do SS data inputs differ from those of BAM?

- Pre-data initialization period 1960-1975 assumes constant landings by fleet (geometric means of 1976-1978)
- Discards need to be supplied in same units as landings (commercial discards converted to weight assuming average weight of age-2 fish)
- Missing landings data are supplied as input, rather than predicted with average F
 - Early recreational landings (1976-1980) assumed same as first year of MRFSS (1981)

SS results: Gray represents 95% confidence bands using asymptotic variance estimates

NOAA

FISHERIES

SERVICE

Terminal status: F ratio 2.22 SSB ratio 0.68

Surplus production model

- No age structure
- Non-equilibrium logistic formulation
- Conditioned on yield
- Combined index of abundance (hierarchical analysis)
- ASPIC software of Prager (1994)
- Uncertainty from bootstrap
- Model runs:
 - Combinations of separate or combined indices, constant or increasing q
 - No RVC survey
 - Headboat index only

Production model results

Production model results

Year

Year

Production model results: B status

2.0

1.5

1.0

B/MSST

0.0

0.5

2.5

0.0

0.5

1.5

B/MSST

1.0

2.5

2.0

Production model results: F status

Age-based projection model

- 12-year projections (2009-2020)
- Same structure as assessment model
- Full F apportioned among fisheries according to recent estimates (geometric means of last 3 yrs)
- Initial (2009) N at age based on 2008 estimates discounted by Z. Initial recruits from S-R model.
- Current F applied in 2009-2010. New management assumed to start in 2011.
 - Several scenarios considered reduction in 2010 F
- Expected values from deterministic projections with bias-corrected S-R.
 - Consistency between projections and benchmarks

- N=40,000 projected time series
- Each time series carried forward a single Monte Carlo/Bootstrap run, chosen at random (thus projections included uncertainty in parameter estimates and initial abundance at age)
- Each projection included stochastic recruitment (lognormal residuals)
- "Rebuilding" defined by SSB≥SSBmsy in at least 50% of projected time series. Here SSBmsy is the point estimate from the base model.

NOAR

Projection scenarios

- Constant F projections
 - Scenario 1: *F* = 0
 - Scenario 2: F = F_{current}
 - Scenario 3: $F = F_{current}$ in 2009 and $F = 75\%F_{current}$ thereafter
 - Scenario 4: $F = F_{current}$ in 2009 and $F = 50\%F_{current}$ thereafter
 - Scenario 5: $F = F_{current}$ in 2009 and $F = 25\%F_{current}$ thereafter
 - Scenario 6: $F = 65\% F_{MSY}$
 - Scenario 7: $F = 75\% F_{MSY}$
 - Scenario 8: $F = 85\% F_{MSY}$
 - Scenario 9: $F = F_{MSY}$
 - Scenario 10: $F = F_{\text{rebuild}}$
 - Scenario 11: $F = F_{\text{rebuild}}$, with $F = F_{\text{current}}$ in 2009 and $F = 75\%F_{\text{current}}$ in 2010
 - Scenario 12: $F = F_{\text{rebuild}}$, with $F = F_{\text{current}}$ in 2009 and $F = 50\% F_{\text{current}}$ in 2010
 - Scenario 13: $F = F_{\text{rebuild}}$, with $F = F_{\text{current}}$ in 2009 and $F = 25\% F_{\text{current}}$ in 2010

Projection: F=0

This defines the rebuilding time frame. Tmin= 3 y (2011-2013), Tmax=10 y (2011-2020)

0.00

Questions?

