Estimating Discard Survival of Gray Triggerfish Using Surface and Bottom Tagging

BRENDAN J. RUNDE^{*1}

PAUL J. RUDERSHAUSEN¹

BEVERLY SAULS²

JEFFREY A. BUCKEL¹

¹NORTH CAROLINA STATE UNIVERSITY, 303 COLLEGE CIRCLE, MOREHEAD CITY, NC ²FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION, ST. PETERSBURG, FL

Acknowledgements

N. Bacheler,

B. Puckett,

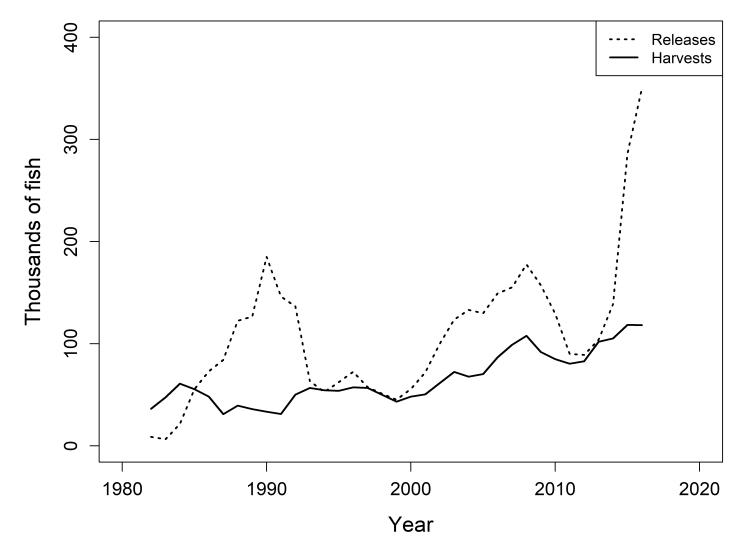
R. Mroch,

J. Peters,

J. Williams,

R. Gatrell,

G. Bolton,


C. Luck,

- J. Krause,
- S. Lombardo,
- P. Kemp.

NOAA Cooperative Research Program Captain Tom Burgess

Gray triggerfish harvests and releases, US South Atlantic

Harmful effects of discarding – Gray triggerfish

Potential causes of injury \rightarrow mortality

- Exhaustion or fatigue
- Hooking injury
- Exposure to air / thermal shock
- Water column predators
- Barotrauma

Immediate mortality is easier to estimate – severe injuries / floating

Delayed is difficult – sublethal injuries leading to a decrease in survival probability

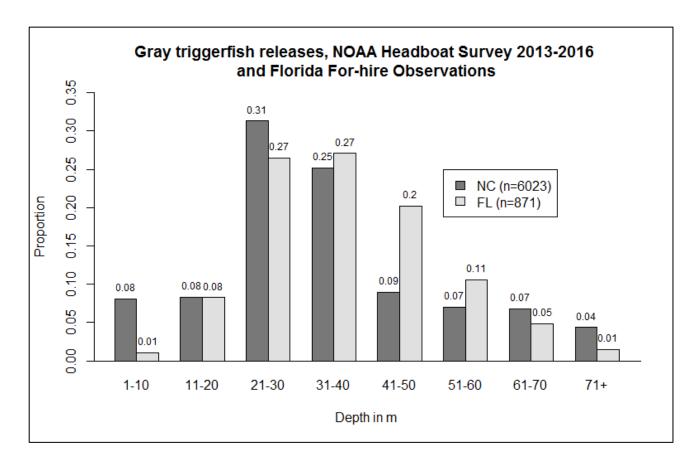
Better estimates needed for many species

Gray triggerfish discard survival

- High levels of discards mean discard survival is important for stock assessment
- 2016 stock assessment: discard mortality = 0.125 or **survival = 0.875**
 - No delayed mortality component

Source	Depths	Methods	n fish	Gear	Control?	Est. survival
Sauls et al.	Broad; mean =	Observer data,	797	HL	No	0.88
(2013)†	29 m	condition proxy				
McCarthy	Unreported	Logbooks,	N/A	HL,	No	0.88
(2013)†		condition proxy		trap		
Rudershausen et	29-37 m	Tagging,	332	HL,	No	0.85
al. (2010) [†]		condition proxy		trap		
Collins (1996) [†]	21 m, 46-54 m	Condition proxy	6	HL	No	0.83
Stephen and	20-80 m	Condition proxy	25	HL	No	0.07
Harris (2010) [‡]						
Patterson et al.	21-32 m	Tagging,	842	HL	No	1.00
(2002) [‡]		condition proxy				

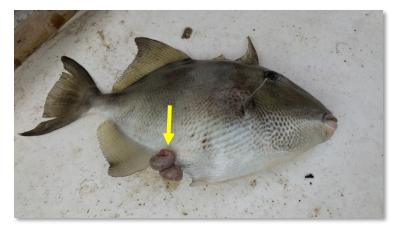
[†]Gray literature; [‡]Peer reviewed literature


1: Determine condition-specific discard mortality (including delayed) of gray triggerfish using conventional tagging

2: Estimate fishery-dependent discard mortality by applying tagging results to observer data of untagged fish

Objective 1: Tagging study

• Gray triggerfish captured with hook-and-line and fish traps in 30m and 36-40m



Tagging study: Methodology

- Tagged with Floy FM-95W internal anchor tags
- Categorized fish by condition at release
 Condition 1 No visible trauma, swam down
 Condition 2 Visible barotrauma, but swam down
 Condition 3 Floated
- Relative tag return rates inform mortality estimates
- Most previous studies have assumed Condition 1 survival = 100%

Not a robust assumption – subclinical injuries

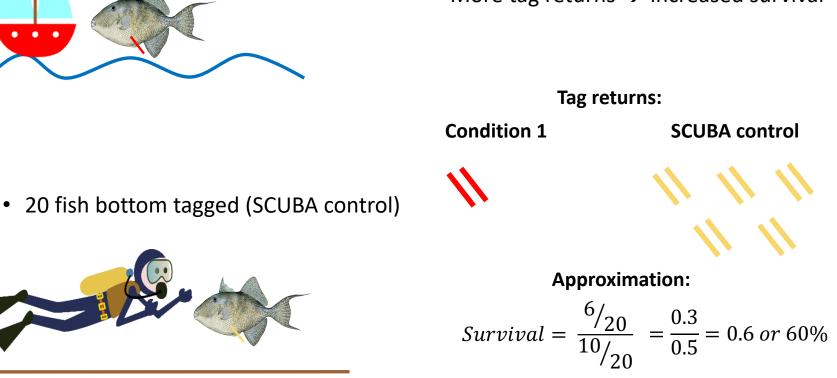
Need a robust control group!

Establishing a robust control: seafloor tagging

Seafloor release Control

Hislop and Hemmings 1971 Rudershausen et al. 2013

Surface release



Photos: Personal, Steve Lombardo

Basic tagging example:

- 20 fish surface tagged (condition 1)
- Location and time are equal only difference is exposure to injury via capture
- Relatively few tag returns \rightarrow low survival
- More tag returns \rightarrow increased survival

Statistical methods

- Cox proportional hazards regression model
- Survival of an individual = hazard ratio at a given time
- Takes into account liberty period (time_{recapture} time_{tagged})
- Allows for estimation of the effect of covariates
 Size
 - ∘Gear
- Based on assumption that seafloor-tagged fish have 100% survival

Statistical methods: two model phases

(most tagging studies)

After scaling: •Condition 1 vs. SCUBA Control = absolute •Condition 2 vs. SCUBA Control = absolute •Condition 3 vs. SCUBA Control = absolute

Tagging study results

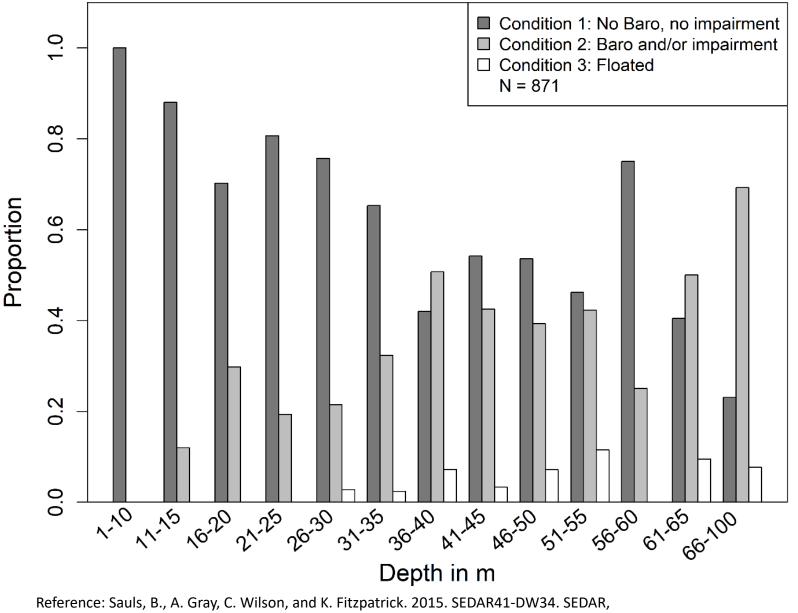
30 m depth

Condition	2.5%	Est. Survival	97.5%
0. SCUBA control		1.00	
1. No trauma at surface	0.26	0.43	0.73

36-40 m depth

Condition	2.5%	Est. Survival	97.5%
0. SCUBA control		1.00	
1. No trauma at surface	0.10	0.24	0.61
2. Trauma, swam down	0.03	0.18	1.02
3. Floated	-	-	-

Floating fish: zero recaptures



Objective 2: Fishery dependent estimate

- Question: what proportion of released triggerfish are in each condition?
- Could use our own data, but tagging may alter the condition of fish

 Incision ≈ venting
- Observer study from Atlantic Coast of Florida
 Headboats and charter vessels
 - $^{\rm o}\,\mbox{Detailed}$ conditions of released triggerfish

North Charleston, SC. 13 pp.

Extrapolated discard survival

30 m

Condition	Est. Surv 30 m	Proportion released in 30 m	Product
1. No trauma at surface	0.43	0.76	0.33
2. Trauma, swam down	0.32	0.22	0.07
3. Floated	0.00	0.02	0.00
Total survival in 30 m			0.40

36-40 m

Condition	Est. Surv 36-40 m	Proportion released in 36-40 m	Product
1. No trauma at surface	0.24	0.42	0.10
2. Trauma, swam down	0.18	0.51	0.09
3. Floated	0.00	0.07	0.00
Total survival in 36-40 m			0.20

Depth	0-25 m	26-30 m	31-35 m	36-40 m	41+ m
Estimated Survival	0.40-1.00 ¹	0.40*	0.30 ²	0.20*	0.20 ³
our rivur					

*Estimated empirically from tagging data; ¹Theoretical survival in 0-25 m ranges from 0.40-100; ²interpolated based on empirical estimates in neighboring depth bins; ³conservative estimate based on empirical estimate in 36-40 m.

• Observer data: overall number of releases by depth zone

Depth	0-25 m	26-30 m	31-35 m	36-40 m	41+ m
Estimated Survival	0.40-1.00 ¹	0.40*	0.30 ²	0.20*	0.20 ³
North Carolina	0.01	0.19	0.25	0.15	0.40
Florida	0.24	0.12	0.19	0.08	0.37

Overall survival estimates across depths and conditions

- North Carolina: 0.26-0.27
- Florida: 0.29-0.43

Conclusions

- SEDAR 41 used 0.875 survival for gray triggerfish
- We estimate survivals as:
 - North Carolina: 0.26-0.27
 - Florida: 0.29-0.43
- Similar work with black sea bass (Rudershausen et al. 2014) found much higher survival
- Low survival of gray triggerfish may merit revisiting of 12" size requirement

Radiograph: C. Harms

