Estimating Discard Survival of Gray Triggerfish Using Surface and Bottom Tagging

BRENDAN J. RUNDE*1
PAUL J. RUDERSHAUSEN ${ }^{1}$
BEVERLY SAULS²
JEFFREY A. BUCKEL ${ }^{1}$

${ }^{1}$ NORTH CAROLINA STATE UNIVERSITY, 303 COLLEGE CIRCLE, MOREHEAD CITY, NC
${ }^{2}$ FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION, ST. PETERSBURG, FL

Acknowledgements

NOAA Cooperative Research Program
Captain Tom Burgess

Gray triggerfish harvests and releases, US
 South Atlantic

Harmful effects of discarding - Gray triggerfish

Potential causes of injury \rightarrow mortality

- Exhaustion or fatigue
- Hooking injury
- Exposure to air / thermal shock
- Water column predators
- Barotrauma

Immediate mortality is easier to estimate - severe injuries / floating
Delayed is difficult - sublethal injuries leading to a decrease in survival probability

- Better estimates needed for many species

Gray triggerfish discard survival

- High levels of discards mean discard survival is important for stock assessment
- 2016 stock assessment: discard mortality $=0.125$ or survival $=\mathbf{0 . 8 7 5}$
- No delayed mortality component

Source	Depths	Methods	n fish	Gear	Control?	Est. survival
Sauls et al. $(2013)^{\dagger}$	Broad; mean = 29 m	Observer data, condition proxy	797	HL	No	0.88
$\begin{aligned} & \text { McCarthy } \\ & (2013)^{\dagger} \end{aligned}$	Unreported	Logbooks, condition proxy	N/A	HL, trap	No	0.88
Rudershausen et al. $(2010)^{\dagger}$	$29-37 \mathrm{~m}$	Tagging, condition proxy	332	HL, trap	No	0.85
Collins (1996) ${ }^{\dagger}$	$21 \mathrm{~m}, 46-54 \mathrm{~m}$	Condition proxy	6	HL	No	0.83
Stephen and Harris (2010) ${ }^{\ddagger}$	$20-80 \mathrm{~m}$	Condition proxy	25	HL	No	0.07
Patterson et al. $(2002)^{\ddagger}$	21-32 m	Tagging, condition proxy	842	HL	No	1.00

${ }^{\dagger}$ Gray literature; ${ }^{\ddagger}$ Peer reviewed literature

Study objectives

1: Determine condition-specific discard mortality (including delayed) of gray triggerfish using conventional tagging

2: Estimate fishery-dependent discard mortality by applying tagging results to observer data of untagged fish

Objective 1: Tagging study

- Gray triggerfish captured with hook-and-line and fish traps in 30m and 36-40m

Tagging study: Methodology

- Tagged with Floy FM-95W internal anchor tags
- Categorized fish by condition at release

Condition 1 - No visible trauma, swam down
Condition 2 - Visible barotrauma, but swam down
Condition 3 - Floated

Relative tag return rates inform mortality estimates

Most previous studies have assumed Condition 1 survival = 100\%

Not a robust assumption - subclinical injuries

Need a robust control group!

Establishing a robust control: seafloor tagging

Seafloor release
Control

Hislop and Hemmings 1971
Rudershausen et al. 2013

Surface release

Basic tagging example:

- 20 fish surface tagged (condition 1)

- Location and time are equal - only difference is exposure to injury via capture
- Relatively few tag returns \rightarrow low survival
- More tag returns \rightarrow increased survival

Tag returns:
Condition 1
SCUBA control

Approximation:
Survival $=\frac{6 / 20}{10 / 20}=\frac{0.3}{0.5}=0.6$ or 60%

Statistical methods

- Cox proportional hazards regression model
- Survival of an individual = hazard ratio at a given time
- Takes into account liberty period (time recapture - time tagged)
- Allows for estimation of the effect of covariates
- Size
-Gear
- Based on assumption that seafloor-tagged fish have 100% survival

Statistical methods: two model phases

Phase 1:

- Condition 1 vs. SCUBA Control = absolute

Phase 2:
${ }^{\circ}$ Condition 2 vs. Condition 1 = relative

- Condition 3 vs. Condition 1 = relative

After scaling:

- Condition 1 vs. SCUBA Control = absolute
- Condition 2 vs. SCUBA Control = absolute
${ }^{\circ}$ Condition 3 vs. SCUBA Control = absolute

Tagging study results

30 m depth

Condition	$\mathbf{2 . 5 \%}$	Est. Survival	$\mathbf{9 7 . 5 \%}$
0. SCUBA control	-----	$\mathbf{1 . 0 0}$	-----
1. No trauma at surface	0.26	$\mathbf{0 . 4 3}$	0.73

36-40 m depth

Condition	$\mathbf{2 . 5 \%}$	Est. Survival	$\mathbf{9 7 . 5 \%}$
0. SCUBA control	------	$\mathbf{1 . 0 0}$	-----
1. No trauma at surface	0.10	$\mathbf{0 . 2 4}$	0.61
2. Trauma, swam down	0.03	$\mathbf{0 . 1 8}$	1.02
3. Floated	-	-	-

Floating fish: zero recaptures

Objective 2: Fishery dependent estimate

- Question: what proportion of released triggerfish are in each condition?
- Could use our own data, but tagging may alter the condition of fish - Incision \approx venting
- Observer study from Atlantic Coast of Florida
- Headboats and charter vessels
- Detailed conditions of released triggerfish

Reference: Sauls, B., A. Gray, C. Wilson, and K. Fitzpatrick. 2015. SEDAR41-DW34. SEDAR, North Charleston, SC. 13 pp.

Extrapolated discard survival

30 m

Condition	Est. Surv $\mathbf{3 0} \mathbf{~ m}$	Proportion released in $\mathbf{3 0} \mathbf{~ m}$	Product
1. No trauma at surface	0.43	0.76	0.33
2. Trauma, swam down	0.32	0.22	0.07
3. Floated	0.00	0.02	0.00
Total survival in $\mathbf{3 0} \mathbf{~ m}$			$\mathbf{0 . 4 0}$

36-40 m

Condition	Est. Surv $\mathbf{3 6 - 4 0 ~ m}$	Proportion released in $\mathbf{3 6 - 4 0} \mathbf{~ m}$	Product
1. No trauma at surface	0.24	0.42	0.10
2. Trauma, swam down	0.18	0.51	0.09
3. Floated	0.00	0.07	0.00
Total survival in 36-40 m			$\mathbf{0 . 2 0}$

Survival estimates across depths

Depth	$\mathbf{0 - 2 5} \mathbf{~ m}$	$\mathbf{2 6 - 3 0} \mathbf{~ m}$	$\mathbf{3 1 - 3 5} \mathbf{~ m}$	$\mathbf{3 6 - 4 0} \mathbf{~ m}$	$\mathbf{4 1 + \mathbf { m }}$
Estimated Survival	$0.40-1.00^{1}$	0.40^{*}	0.30^{2}	0.20^{*}	0.20^{3}

- *Estimated empirically from tagging data; ${ }^{1}$ Theoretical survival in 0-25 m ranges from 0.40-100; ${ }^{2}$ interpolated based on empirical estimates in neighboring depth bins; ${ }^{3}$ conservative estimate based on empirical estimate in $36-40 \mathrm{~m}$.

In what depths are fish released?

- Observer data: overall number of releases by depth zone

Depth	$\mathbf{0 - 2 5 ~ m}$	$\mathbf{2 6 - 3 0} \mathbf{~ m}$	$\mathbf{3 1 - 3 5} \mathbf{~ m}$	$\mathbf{3 6 - 4 0} \mathbf{~ m}$	$\mathbf{4 1 + \mathbf { m }}$
Estimated Survival	$0.40-1.00^{1}$	0.40^{*}	0.30^{2}	0.20^{*}	0.20^{3}
North Carolina	0.01	0.19	0.25	0.15	0.40
Florida	0.24	0.12	0.19	0.08	0.37

Overall survival estimates across depths and conditions

- North Carolina: 0.26-0.27
- Florida: 0.29-0.43

Conclusions

- SEDAR 41 used 0.875 survival for gray triggerfish
- We estimate survivals as:
- North Carolina: 0.26-0.27
- Florida: 0.29-0.43
- Similar work with black sea bass (Rudershausen et al. 2014) found much higher survival
- Low survival of gray triggerfish may merit revisiting of 12" size requirement

Potential

