POLICIES FOR THE PROTECTION AND RESTORATION OF ESSENTIAL FISH HABITATS FROM BEACH DREDGING AND FILLING, BEACH RENOURISHMENT AND LARGE-SCALE COASTAL ENGINEERING

Policy Context

This document establishes the policies of the South Atlantic Fishery Management Council (SAFMC) regarding protection of the essential fish habitats (EFH) and habitat areas of particular concern (EFH-HAPCs) impacted by beach dredge-and-fill activities, and related large-scale coastal engineering projects (e.g., beach scraping). The policies are designed to be consistent with the overall habitat protection policies of the SAFMC as formulated and adopted in the Habitat Plan (SAFMC, 1998a), the Comprehensive EFH Amendment (SAFMC, 1998b) and Fishery Ecosystem Plan (SAFMC, 2009). This document is not intended to supersede any other applicable state or federal policy or regulation pertaining to beach dredge-and-fill projects, but intended to complement existing policies or regulations for the benefit of protecting essential fish habitat managed by the SAFMC.

The findings presented below assess the threats to EFH potentially posed by activities related to the large-scale dredging and disposal of sediments in the coastal ocean and adjacent habitats, and the processes whereby those resources are placed at risk. The policies established in this document are designed to avoid, minimize and offset damage caused by these activities, in accordance with the general habitat policies of the SAFMC as mandated by law.

EFH at Risk from Beach Dredge-and-Fill Activities

The SAFMC finds:

1) In general, the array of large-scale and long-term beach dredging projects and related disposal activities currently being considered for the United States southeast together constitute a real and significant threat to EFH under the jurisdiction of the SAFMC.
2) The cumulative effects of these projects have not been adequately assessed, including impacts on public trust marine and estuarine resources, use of public trust beaches, public access, state and federally protected species, state and federally designated habitat areas, SAFMC-designated EFH and EFH-HAPCs.

3) Individual beach dredge-and-fill projects and related large-scale coastal engineering activities rarely provide adequate impact assessments or consideration of potential damage to fishery resources under state and federal management. Historically, emphasis has been placed on the logistics of dredging and economics, with environmental considerations dominated by compliance with the Endangered Species Act for sea turtles, piping plovers and other listed organisms. Less emphasis has been placed on the hundreds of other species affected, many with direct and significant fishery value.

4) Opportunities to avoid or minimize impacts of beach dredge-and-fill activities on fishery resources, and mitigation for unavoidable impacts have rarely been proposed or implemented. Monitoring is rarely adequate to develop statistically appropriate impact evaluations.

5) Large-scale beach dredge-and-fill activities have the potential to impact a variety of habitats across the shelf, including:

a) waters and benthic habitats in and near the dredging sites
b) waters between dredging and filling sites
c) waters and benthic habitats in and near the fill sites, and
d) waters and benthic habitats potentially affected as sediments move subsequent to deposition in fill areas.

6) Certain nearshore habitats are particularly important to the long-term viability of commercial and recreational fisheries under SAFMC management, and potentially threatened by large-scale, long-term or frequent disturbance by dredging and filling:

a) the swash and surf zones and beach-associated bars
b) subtidal soft-sediment topographic features
c) nearshore and offshore coral reefs, hardbottom, and worm reefs
d) inlets
e) Submerged Aquatic Vegetation (SAV)

7) Large sections of South Atlantic waters potentially affected by these projects, both individually and collectively, have been identified as EFH or EFH-HAPC by the SAFMC, Mid-Atlantic Fishery Management Council (MAFMC), and National Marine Fisheries Service - Highly Migratory Species (HMS). Potentially Affected species and their EFH under federal management include (SAFMC, 1998b):

a) summer flounder (various nearshore waters, including the surf zone and inlets; certain offshore waters)
b) bluefish (various nearshore waters, including the surf zone and inlets)
c) many snapper and grouper species (live hardbottom from shore to 600 feet, and –
for estuarine-dependent species [e.g., gag grouper and gray snapper] –
unconsolidated bottoms and live hardbottoms to the 100 foot contour).
d) black sea bass (various nearshore waters, including unconsolidated bottom and
live hardbottom to 100 feet, and hardbottoms to 600 feet)
e) penaeid shrimp (offshore habitats used for spawning and growth to maturity, and
waters connecting to inshore nursery areas, including the surf zone and inlets)
f) coastal migratory pelagics [e.g., king mackerel, Spanish mackerel] (sandy shoals
capes, bars, barrier island ocean-side waters from the surf zone to the shelf
break inshore of the Gulf Stream; all coastal inlets)
g) corals of various types (hard substrates and muddy, silt bottoms from the subtidal
to the shelf break)
h) areas identified as EFH for Highly Migratory Species (HMS) managed by the
Secretary of Commerce (e.g., sharks: inlets and nearshore waters, including
pupping and nursery grounds)

In addition, numerous species of crustaceans, mollusks, and annelids that are not directly
managed, but form the critical prey base for most managed species, are killed or
otherwise directly or indirectly affected by large dredge-and-fill projects (Greene, 2002).

8) Beach dredge-and-fill projects also potentially threaten important habitats for
anadromous species under federal, interstate and state management (in particular,
inlets and offshore overwintering grounds), as well as essential overwintering
grounds and other critical habitats for weakfish and other species managed by the
Atlantic States Marine Fisheries Commission (ASMFC) and the states.

9) Many of the habitats potentially affected by these projects have been identified as
EFH-HAPCs by the SAFMC. The specific fishery management plan is provided in
parentheses:

a) all nearshore hardbottom areas (SAFMC, snapper grouper).
b) all coastal inlets (SAFMC, penaeid shrimps, and snapper grouper).
c) near-shore spawning sites (SAFMC, penaeid shrimp).
d) benthic Sargassum (SAFMC, snapper grouper).
e) from shore to the ends of the sandy shoals of Cape Lookout, Cape Fear, and Cape
Hatteras, North Carolina; Hurl Rocks, South Carolina; Phragmatopora (worm
reefs) reefs off the central coast of Florida and nearshore hardbottom south of
Cape Canaveral (SAFMC, coastal migratory pelagics).
f) Atlantic coast estuaries with high numbers of Spanish mackerel and cobia from
ELMR, to include Bogue Sound, New River, North Carolina; Broad River, South
Carolina (SAFMC, coastal migratory pelagics).
g) Florida Bay, Biscayne Bay, Card Sound, and coral hardbottom habitat from
Jupiter Inlet through the Dry Tortugas, Florida (SAFMC, Spiny Lobster)
h) Hurl Rocks (South Carolina), The Phragmatopoma (worm reefs) off central east
coast of Florida, nearshore (0-4 meters; 0-12 feet) hardbottom off the east coast of
Florida from Cape Canaveral to Broward County; offshore (5-30 meters; 15-90
feet) hardbottom off the east coast of Florida from Palm Beach County to Fowey
Rocks; Biscayne Bay, Florida; Biscayne National Park, Florida; and the Florida Keys National Marine Sanctuary (SAFMC, Coral, Coral Reefs and Live Hardbottom Habitat).

i) EFH-HAPCs designated for HMS species (e.g., sharks) in the South Atlantic region (NMFS, Highly Migratory Species).

10) Habitats likely to be affected by beach dredge-and-fill projects include many recognized in state-level natural resource management plans. Examples of these habitats include Critical Habitat Areas (CHAs) established by the North Carolina Marine Fisheries Commission, either in species-specific Fishery Management Plans (FMPs) or in the North Carolina Coastal Habitat Protection Plan (Deaton et al., 2010).

11) Research conducted in east Florida has documented important habitat values for nearshore, hardbottom habitats, which are often buried by beach dredging projects (CSA International, Inc., 2009). These habitats are used by over 500 species of fishes and invertebrates, including juveniles of many reef fishes. Equivalent scientific work is just beginning in other South Atlantic states, but life histories suggest that similar habitat use patterns will be found.

Threats to Marine and Estuarine Resources from Beach Dredge-and-fill Activities and Related Large Coastal Engineering Projects

The SAFMC finds that beach dredge-and-fill activities and related large-scale coastal engineering projects (including inlet alteration projects) and disposal of material for navigational maintenance, threaten or potentially threaten EFH through the following mechanisms:

1) Direct mortality, displacement, and altered community structure of benthic organisms at and near sediment dredging sites (Van Dolah et al., 1992; Wilber and Stern, 1992; Van Dolah et al., 1994; Jutte et al., 1999a and b; Greene, 2002; Byrnes et al., 2004a and b; Diaz et al., 2004; Bergquist et al., 2009)

2) Direct mortality of fish larvae, as well as other planktonic and nektonic organisms at and near sediment dredging sites due to entrainment and decreased water quality. (Olney and Bilkovic, 1998; Wilber and Clarke, 2001, Greene, 2002).

3) Direct mortality, displacement, and altered community structure of organisms at initial sediment fill sites (Rakocinski et al., 1996; Peterson et al., 2000a; Greene, 2002; Posey and Alphin, 2002; Peterson et al. 2000b; Peterson et al. 2006; Colosio et al., 2007; Leewis et al., 2012; Schlacher et al. 2012; Speybroeck et al., 2006; Van Tomme et al., 2013)

4) Elevated turbidity and deposition of fine sediments down-current from dredging sites (Dodge et al., 1974; Jordan et al., 2010)
5) Alteration of seafloor topography and associated current and waves patterns and magnitudes at dredging areas (Greene, 2002; Blake et al., 1996; Byrnes et al. 2004a and b; Maa et al., 2004; Finkl and Hobbs, 2009)

6) Alteration of seafloor sediment size-frequency distributions at dredging sites, with secondary effects on benthos at those sites (Van Dolah et al., 1992; Van Dolah et al., 1994; Van Dolah et al., 1998; Jutte and Van Dolah, 1999 and 2001; Jutte et al., 2001; Greene, 2002; Jutte et al., 199a and b; Diaz et al., 2004; Nairn et al., 2004; Bergquist et al., 2009; Xu et al., 2014)

7) Decreased primary productivity at dredged sites due to greater depths and increased turbidity (Greene, 2002)

8) Increased deposition of fine-grained sediments and organic matter in dredged areas, potentially resulting in decreased dissolved oxygen and increased hydrogen sulphide levels (Greene, 2002; Byrnes et al., 2004a and b; Bergquist et al., 2009)

9) Elevated turbidity in and near initial fill sites, especially in the surf zone, and deposition of fine sediment down-current from initial fill sites (Peterson et al., 2000a and b; Greene, 2002; Speybroeck et al., 2006)

10) Alteration of nearshore topography and current and wave patterns and magnitudes associated with fill (Greene, 2002; Benedet et al. 2004; Speybroeck et al., 2006; Hartog et al., 2008)

11) Movement of deposited sediment away from initial fill sites, especially onto hardbottoms (Nelson, 1989; Greene, 2002; Speybroeck et al., 2006; Jordan et al., 2010)

12) Alteration of large-scale sediment budgets, sediment movement patterns and feeding and other ecological relationships, including the potential for cascading disturbance effects (Peterson et al., 2000a; Greene, 2002; Benedet et al., 2004; Nairn et al., 2004; Speybroeck et al., 2006)

13) Alteration of large-scale movement patterns of water, with secondary effects on water quality and biota (Greene, 2002; Nairn et al., 2004; Hartog et al., 2008)

14) Alteration of movement patterns and successful inlet passage for larvae, post-larvae, juveniles and adults of marine and estuarine organisms (Greene, 2002)

15) Alteration of long-term shoreline migration patterns (inducing further ecological cascades with consequences that are difficult to predict) (Greene, 2002)

16) Exacerbation of transport and/or biological uptake of toxicants and other pollutants released at either dredge or fill sites (Greene, 2002)
In addition, the interactions between cumulative and direct (sub-lethal) effects among the above factors likely trigger non-linear impacts that are completely unstudied.

SAFMC Policies for Beach Dredge-and-fill Projects and Related Large Coastal Engineering Projects

Recommendations:

The SAFMC establishes the following general policies related to large-scale beach dredge-and-fill and related projects, to clarify and augment the general policies already adopted in the Habitat Plan and Comprehensive Habitat Amendment (SAFMC 1998a; SAFMC 1998b):

1) For each project, a comprehensive environmental document should be prepared based on the best available information, and should include:
 a) Defined areas of direct and indirect impact, using guidance provided in 40 CFR Section 1508.8 Effects. Areas of direct impact should at a minimum include the borrow sites (dredged or mined areas), the beach/nearshore sites (fill areas), and the Equilibrated Toe of Fill. Areas of indirect impact should at a minimum include the areas adjacent to direct impact areas that would be affected by indirect project impacts.
 b) Defined direct and indirect project impacts using guidance provided in 40 CFR Section 1508.8 Effects. Direct impacts should at a minimum include burial and smothering. Indirect impacts should at a minimum include turbidity and sedimentation.
 c) Baseline surveys designed with appropriate methodology to adequately document pre-project conditions for biological, physical and water resources in both direct and indirect impact areas. Baseline surveys should follow the BACI (Before-After, Control-Impact) sampling framework (Stewart-Oaten 1986). Biological resources at a minimum include benthic infauna and epifauna, SAV, hard bottom habitat, hard bottom-dependent species, coral reef habitat, and coral reef-dependent species (e.g., corals, octocorals). Physical and water resources at a minimum include topography, bathymetry, water quality (turbidity, sedimentation, total suspended solids and dissolved oxygen) and sediment characteristics (grain size, sorting, and mineralogy).
 d) A full range of alternatives, including alternatives that may minimize future need for additional nourishment activities (e.g., sand bypass).
 e) Impact assessment for each alternative using ecologically conservative assumptions and worst case scenarios, to include the following components:
 i. Identification of avoidance and minimization efforts.
 ii. Identification of the direct and indirect project impacts that cannot be avoided or minimized, using appropriately designed baseline surveys identified in c) above.
 iii. Identification of cumulative impacts that at a minimum includes impacts associated with other beach dredge-and-fill projects, as well as any other
large-scale coastal engineering projects that are both geographically and ecologically related.

f) A compensatory mitigation plan for the preferred alternative to include the following components:
 i. Calculation of the direct and indirect project impacts that cannot be avoided or minimized as identified in e) ii. above, and a detailed explanation of how direct and indirect project impact calculations were derived.
 ii. Calculation of cumulative impacts as identified in e) iii. above, and a detailed explanation of how cumulative impact calculations were derived.
 iii. Assessment of mitigation amounts for direct and indirect project impacts and cumulative impacts (based on impact calculations from f) i. and ii. above), determined by use of a functional assessment, ratio, or other tool. Include a detailed explanation of how mitigation amounts were assessed.
 iv. Identification of the compensatory mitigation actions that will be taken to compensate for project impacts. Compensatory mitigation actions should compensate for all reasonably predictable direct, indirect, and cumulative impacts on biological, physical and water resources, taking into account uncertainty about these effects, and should be local, up-front and in-kind.
 v. Monitoring plan for compensatory mitigation actions designed with appropriate methodology to adequately detect and document mitigation success.

g) A during-construction monitoring plan as deemed necessary for a specific project, designed with appropriate methodology to adequately detect and document both direct and indirect project impacts. Monitoring plans should follow the BACI sampling framework.

h) A post-construction monitoring plan for biological, physical and water resources designed with appropriate methodology to adequately detect and document both direct and indirect project impacts. Monitoring plans should follow the BACI sampling framework. Post-construction monitoring should include quantitative comparisons of abundance, biomass, species diversity, and community composition in direct and indirect impact area and reference (control) areas before and after dredge-and-fill operations.

2) Fill material should match the sediment characteristics of the recipient beach as closely as possible.

3) Dredging should be limited to bathymetric peaks (rather than depressions or level sea bottom) in areas characterized by strong currents and sand movement, in order to increase sediment infilling rates and decrease the duration of impacts to benthic habitats.

4) Dredging should be limited to the shallowest depths possible to minimize changes in wave energy and currents, thus reducing the likelihood of infilling with fine-grained sediments.
Literature Cited

Additional Literature Sources

